版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省沈阳市第九十六中学高三数学文下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.(文)若复数,则是成立的(
)(A)充要条件
(B)既不充分又不必要条件
(C)充分不必要条件
(D)必要不充分条件参考答案:D若,则成立。若,不妨取,则有成立,但不成立,所以是成立的必要不充分条件,所以D.2.把函数的图像上所有的点向左平移个单位长度,再把图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到的图像所表示的函数为(
)A.
B.
C.
D.参考答案:B略3.函数的图象是(
)参考答案:B试题分析:根据题意,由于函数的图象有意义,则满足,根据定义域排除A,D然后在B,C中通过赋值法,令x=2,可知函数值大于零,图像在x轴的上方,故排除C,选B.
4.与直线和曲线都相切的半径最小的圆的标准方程是
A.
B.
C.
D.参考答案:C5.以下判断正确的是(
)A.函数为上的可导函数,则“”是“为函数极值点”的充要条件
B.“”是“直线与直线平行”的充要条件C.命题“在中,若”的逆命题为假命题
D.命题“”的否定是“”
参考答案:B略6.已知命题在命题①中,真命题是(
)A①③
B.①④
C.②③
D.②④参考答案:C7.双曲线的左焦点为,顶点为,是该双曲线右支上任意一点,则分别以线段为直径的两圆一定是(
)
A.相交
B.内切
C.外切
D.相离参考答案:B略8.函数的值域为A.
B.
C.
D.参考答案:A9.
设函数是定义在R上的以5为周期的奇函数,若,则a的取值范围是(
)A.
B.
C.
D.参考答案:A10.函数的最小正周期是(
)A.
B.
C.
D.
参考答案:答案:B二、填空题:本大题共7小题,每小题4分,共28分11.设函数f(x)是定义在R上的周期为2的偶函数,当x∈[0,1]时,f(x)=x+1,则=.参考答案:【考点】函数的周期性;函数奇偶性的性质;函数的值.【分析】利用函数的周期性先把转化成f(),再利用函数f(x)是定义在R上的偶函数转化成f(),代入已知求解即可.【解答】解:∵函数f(x)是定义在R上的周期为2的函数,∴=f(+2)=f(),又∵函数f(x)是定义在R上的偶函数,∴f()=f(),又∵当x∈[0,1]时,f(x)=x+1,∴f()=+1=,则=.故答案为:.12.已知△ABC三个顶点所表示的复数分别是1+3i,3+2i,4+4i,则△ABC的面积是_____________参考答案:313.在平面直角坐标系中,双曲线的一个顶点与抛物线的焦点重合,则双曲线的两条渐近线的方程为
参考答案:14.已知三棱锥S-ABC的底面是正三角形,A点在侧面SBC上的射影H是△SBC的垂心,二面角H-AB-C的平面角等于30°,SA=2。那么三棱锥S-ABC的体积为__________.参考答案:由题设,AH⊥面SBC.作BH⊥SC于E.由三垂线定理可知SC⊥AE,SC⊥AB.故SC⊥面ABE.设S在面ABC内射影为O,则SO⊥面ABC.由三垂线定理之逆定理,可知CO⊥AB于F.同理,BO⊥AC.故O为△ABC的垂心.
又因为△ABC是等边三角形,故O为△ABC的中心,从而SA=SB=SC=.
因为CF⊥AB,CF是EF在面ABC上的射影,由三垂线定理,EF⊥AB.所以,∠EFC是二面角H-AB-C的平面角.故∠EFC=30°,OC=SCcos60°=,
SO=tg60°=×=3.
又OC=AB,故AB=OC=×=3.
所以,VS-ABC=.15.不等式对任意实数恒成立,则实数的取值范围为_________________参考答案:16.已知向量==,若,则的最小值为
参考答案:6
17.若存在实数满足,则实数的取值范围是________.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)已知△ABC的三内角A、B、C所对的边的长分别为a、b、c,设m=(a-b,c),n=(a-c,a+b),且m∥n.
(1)求∠B;
(2)若a=1,b=,求△ABC的面积.参考答案:(1)解:∵m∥n,∴ 2分
∴ 3分
由余弦定理得: 5分
又. 6分(2)解:∵,由正弦定理得
,∴ 8分
∵a<b,∴A<B,∴ 10分
故 11分
∴. 12分19.(本小题满分10分)选修4-4:坐标系与参数方程在极坐标系中,已知三点.(1)求经过的圆的极坐标方程;(2)以极点为坐标原点,极轴为轴的正半轴建立平面直角坐标系,圆的参数方程为(是参数),若圆与圆外切,求实数的值.参考答案:(1);(2).试题分析:(1)求出圆的普通方程,再将普通方程转化为极坐标方程;(2)将圆化成普通方程,根据两圆外切列出方程解出.(2)圆(是参数)对应的普通方程为,因为圆与圆外切,所以,解得.考点:1、圆的参数方程;2、简单曲线的极坐标方程.20.在四棱锥P﹣ABCD中,底面ABCD是平行四边形,E为PD的中点,点F在棱PD上,且FD=PD.(Ⅰ)求证:PB∥平面EAC;(Ⅱ)求三棱锥F﹣ADC与四棱锥P﹣ABCD的体积比.参考答案:【考点】LF:棱柱、棱锥、棱台的体积;LS:直线与平面平行的判定.【分析】(I)如图所示,连接BD,利用三角形中位线定理可得:PB∥OE,再利用线面平行的判定定理即可证明.(Ⅱ)由FD=PD,可得:点F到平面ACD(也是平面ABCD)的距离与点P到平面ABCD的距离比为1:3,又易知△ACD的面积等于四边形ABCD面积的一半,即可得出体积之比.【解答】(I)证明:如图所示,连接BD,设BD∩AC=O,易知O为DB的中点.又E为PD的中点,在△PDB中,∴PB∥OE.又OE?平面EAC,PB?平面EAC,故PB∥平面EAC.(Ⅱ)解:∵FD=PD,∴点F到平面ACD(也是平面ABCD)的距离与点P到平面ABCD的距离比为1:3,又易知△ACD的面积等于四边形ABCD面积的一半,∴三棱锥F﹣ADC与四棱锥P﹣ABCD的体积比为1:6.21.(本小题满分12分)已知椭圆的离心率为且曲线过点(1)求椭圆C的方程;(2)已知直线与椭圆C交于不同的两点A,B,且线段AB的中点不在圆
内,求的取值范围。参考答案:(1)
过,
(2)高考资源网
中点
或
综上,或略22.(本小题满分12分)
如图,四棱锥P-ABCD中,底面为菱形,且,.
(I)求证:;(II)若,求二面角的余弦值。参考答案:(Ⅰ)证明:取的中点,连接.∵,四边形为菱形,且,∴和为两个全等的等边三角形,则∴平面,又平面,∴;(Ⅱ).试题分析:(1)首先作出辅助线即取的中点,连接,然后由已知条件易得和为两个全等的等边三角形,于是有,进而由线面垂直的判定定理可知所证结论成立;(Ⅱ)建立适当的直角坐标系,并求出每个点的空间坐标,然后分别求出平面、平面的法向量,再运用公式即可求出二面角的平面角的余弦值,最后判断其大小为钝角还是锐角即可.试题解析:(Ⅰ)证明:取的中点,连接.∵,四边形为菱形,且,∴和为两个全等的等边三角形,则∴平面,又平面,∴;(Ⅱ)解:在中,由已知得,,,则,∴,即,又,∴平面;以点E为坐标原点,分别以EA,EB,EP所在直线为x,y,z轴,建立
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 养老院老人家庭关系沟通制度
- 新经济环境下企业如何进行战略管理博商课件
- 摊位租赁合同(2篇)
- 《平面设计绪论》课件
- 2024年度工业产品可靠性检测委托协议书3篇
- 2025年内蒙古考货运从业资格证题库及答案
- 2025年承德货运从业资格证科目一考试答案
- 2024年版建筑施工合同书下载
- 企业文化培训课件-管理实践
- 2025年宜春货运资格证考试口诀
- 《当代网络文学》课件-
- 《教师专业发展》课件
- 家长会 课件(共44张ppt) 九年级上学期
- 三年级上册音乐课件-第四单元 紫竹调 |人教新课标 (共15张PPT)
- 妊娠期VTE的防治课件
- 作者简介:传歌者王洛宾
- 【QC】提高装配式结构叠合板验收合格率2019
- 物业承接查验资料移交情况记录表
- 肿瘤科发展规划
- 小学英语工作室个人年度总结5篇
- 煤矿信号工培训试题(有答案)
评论
0/150
提交评论