




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设函数f(x)是定义在R上的以3为周期的奇函数,若f(1)>1,f(2)=,则()A.a< B.a<且a≠1 C.a>且a<-1 D.-1<a<2.已知函数和都是定义在上的偶函数,当时,,则()A. B. C. D.3.已知函数,则曲线在处的切线的倾斜角为()A. B. C. D.4.在一组样本数据为,,,(,,,,,不全相等)的散点图中,若所有样本点都在直线上,则这组样本数据的相关系数为()A. B. C.1 D.-15.已知向量,,若,则()A.-1 B.1 C.-2或1 D.-2或-16.已知直线l过点P(1,0,-1),平行于向量,平面过直线l与点M(1,2,3),则平面的法向量不可能是()A.(1,-4,2) B. C. D.(0,-1,1)7.函数在单调递增,且为奇函数,若,则满足的的取值范围是().A. B. C. D.8.若,是第三象限的角,则()A. B. C. D.9.函数()A. B.C. D.10.某校实行选科走班制度,张毅同学的选择是物理、生物、政治这三科,且物理在A层班级,生物在B层班级,该校周一上午课程安排如下表所示,张毅选择三个科目的课各上一节,另外一节上自习,则他不同的选课方法有第一节第二节第三节第四节地理B层2班化学A层3班地理A层1班化学A层4班生物A层1班化学B层2班生物B层2班历史B层1班物理A层1班生物A层3班物理A层2班生物A层4班物理B层2班生物B层1班物理B层1班物理A层4班政治1班物理A层3班政治2班政治3班A.8种 B.10种 C.12种 D.14种11.“,”的否定是A., B.,C., D.,12.已知函数,若曲线在点处的切线方程为,则实数的取值为()A.-2 B.-1 C.1 D.2二、填空题:本题共4小题,每小题5分,共20分。13.已知圆,圆,直线分别过圆心,且与圆相交于两点,与圆相交于两点,点是椭圆上任意一点,则的最小值为___________;14.给出下列命题:①“”是“”的充分必要条件;②命题“若,则”的否命题是“若,则”;③设,,则“且”是“”的必要不充分条件;④设,,则“”是“”的必要不充分条件.其中正确命题的序号是_________.15.已知函数,则当函数恰有两个不同的零点时,实数的取值范围是______.16.已知,且复数是纯虚数,则_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知二阶矩阵A=abcd,矩阵A属于特征值λ1=-1的一个特征向量为α118.(12分)已知椭圆的中心在原点,焦点在轴上,长轴长是短轴长的2倍且经过点,平行于的直线在轴上的截距为,交椭圆于两个不同点.(1)求椭圆的标准方程以及的取值范围;(2)求证直线与轴始终围成一个等腰三角形.19.(12分)如图所示,四边形为菱形,且,,,且,平面.(1)求证:平面平面;(2)求平面与平面所成锐二面角的正弦值.20.(12分)在平面直角坐标系中,直线的参数方程为(为参数且).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程是.(1)将曲线的极坐标方程化为直角坐标方程;(2)判断直线与曲线的位置关系,并说明理由.21.(12分)已知等差数列不是常数列,其前四项和为10,且、、成等比数列.(1)求通项公式;(2)设,求数列的前项和.22.(10分)如图,在多面体中,四边形是菱形,⊥平面且.(1)求证:平面⊥平面;(2)若设与平面所成夹角为,且,求二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
先利用函数f(x)是定义在实数集上的以3为周期的奇函数得f(2)=f(-1)=-f(1),再利用f(1)>1代入即可求a的取值范围.【详解】因为函数f(x)是定义在实数集上的以3为周期的奇函数,
所以f(2)=f(-1)=-f(1).
又因为f(1)>1,故f(2)<-1,即<-1⇒<0
解可得-1<a<.
故选:D.【点睛】本题主要考查了函数的周期性,以及函数奇偶性的性质和分式不等式的解法,属于基础题.2、B【解析】
由和都是定义在上的偶函数,可推导出周期为4,而,即可计算.【详解】因为都是定义在上的偶函数,所以,即,又为偶函数,所以,所以函数周期,所以,故选B.【点睛】本题主要考查了函数的奇偶性,周期性,利用周期求函数值,属于中档题.3、B【解析】
求得的导数,可得切线的斜率,由直线的斜率公式,可得所求倾斜角.【详解】函数的导数为,可得在处的切线的斜率为,即,为倾斜角,可得.故选:B.【点睛】本题主要考查了导数的几何意义,函数在某点处的导数即为曲线在该点处的切线的斜率,是解题的关键,属于容易题.4、D【解析】
根据回归直线方程可得相关系数.【详解】根据回归直线方程是yx+2,可得这两个变量是负相关,故这组样本数据的样本相关系数为负值,且所有样本点(xi,yi)(i=1,2,…,n)都在直线上,则有|r|=1,∴相关系数r=﹣1.故选D.【点睛】本题考查了由回归直线方程求相关系数,熟练掌握回归直线方程的回归系数的含义是解题的关键.5、C【解析】
根据题意得到的坐标,由可得的值.【详解】由题,,,或,故选C【点睛】本题考查利用坐标法求向量差及根据向量垂直的数量积关系求参数6、D【解析】试题分析:由题意可知,所研究平面的法向量垂直于向量,和向量,而=(1,2,3)-(1,0,-1)=(0,2,4),选项A,(2,1,1)(1,-4,2)=0,(0,2,4)(1,-4,2)=0满足垂直,故正确;选项B,(2,1,1)(,-1,)=0,(0,2,4)(,-1,)=0满足垂直,故正确;选项C,(2,1,1)(-,1,−)=0,(0,2,4)(-,1,−)=0满足垂直,故正确;选项D,(2,1,1)(0,-1,1)=0,但(0,2,4)(0,-1,1)≠0,故错误.考点:平面的法向量7、D【解析】
是奇函数,故;又是增函数,,即则有,解得,故选D.【点睛】解本题的关键是利用转化化归思想,结合奇函数的性质将问题转化为,再利用单调性继续转化为,从而求得正解.8、B【解析】
先利用同角三角函数的基本关系计算出的值,然后利用两角和的正弦公式可计算出的值.【详解】是第三象限角,,且,因此,,故选B.【点睛】本题考查两角和的正弦公式计算三角函数值,解题时充分利用同角三角函数的基本关系进行计算,考查运算求解能力,属于基础题.9、A【解析】
由于函数为偶函数又过(0,0),排除B,C,D,所以直接选A.【考点定位】对图像的考查其实是对性质的考查,注意函数的特征即可,属于简单题.10、B【解析】
根据表格进行逻辑推理即可得到结果.【详解】张毅不同的选课方法如下:(1)生物B层1班,政治1班,物理A层2班;(2)生物B层1班,政治1班,物理A层4班;(3)生物B层1班,政治2班,物理A层1班;(4)生物B层1班,政治2班,物理A层4班;(5)生物B层1班,政治3班,物理A层1班;(6)生物B层1班,政治3班,物理A层2班;(7)生物B层2班,政治1班,物理A层3班;(8)生物B层2班,政治1班,物理A层4班;(9)生物B层2班,政治3班,物理A层1班;(10)生物B层2班,政治3班,物理A层3班;共10种,故选B.【点睛】本题以实际生活为背景,考查了逻辑推理能力与分类讨论思想,属于中档题.11、D【解析】
通过命题的否定的形式进行判断.【详解】因为全称命题的否定是特称命题,故“,”的否定是“,”.故选D.【点睛】本题考查全称命题的否定,属基础题.12、B【解析】
求出函数的导数,利用切线方程通过f′(0),求解即可;【详解】f(x)的定义域为(﹣1,+∞),因为f′(x)a,曲线y=f(x)在点(0,f(0))处的切线方程为y=2x,可得1﹣a=2,解得a=﹣1,故选:B.【点睛】本题考查函数的导数的几何意义,切线方程的求法,考查计算能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据圆和椭圆的参数方程可假设出点坐标;根据共线、共线可得坐标;写出向量后,根据向量数量积运算法则可求得,从而可知当时,取得最小值,代入求得结果.【详解】由题意可设:,,则,,同理可得:当时,本题正确结果:【点睛】本题考查向量数量积的最值的求解问题,关键是能够灵活应用圆和椭圆的参数方程的形式,表示出所需的点的坐标,从而将问题转化为三角函数最值的求解问题.14、②④【解析】
逐项判断每个选项的正误得到答案.【详解】①当时,成立,但不成立,所以不具有必要性,错误②根据否命题的规则得命题“若,则”的否命题是“若,则”;,正确.③因为且”是“”的充分不必要条件,所以错误④因为且,所以“”是“”的必要不充分条件.正确.故答案为②④【点睛】本题考查了充分必要条件,否命题,意在考查学生的综合知识运用.15、【解析】
由题方程恰有两个不同的实数根,得与有2个交点,利用数形结合得a的不等式求解即可【详解】由题可知方程恰有两个不同的实数根,所以与有2个交点,因为表示直线的斜率,当时,,设切点坐标为,,所以切线方程为,而切线过原点,所以,,,所以直线的斜率为,直线与平行,所以直线的斜率为,所以实数的取值范围是.故答案为【点睛】本题考查函数与方程的零点,考查数形结合思想,考查切线方程,准确转化题意是关键,是中档题,注意临界位置的开闭,是易错题16、【解析】
由复数的运算法则可得,结合题意得到关于的方程,解方程即可确定实数的值.【详解】由复数的运算法则可得:,复数为纯虚数,则:,据此可得:.故答案为.【点睛】本题主要考查复数的运算法则,纯虚数的概念及其应用等知识,意在考查学生的转化能力和计算求解能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、A=【解析】
运用矩阵定义列出方程组求解矩阵A【详解】由特征值、特征向量定义可知,Aα即abc同理可得3a+2b=12,3c+2d=8.解得a=2,b=3,c=2,d=1.因此矩阵【点睛】本题考查了由矩阵特征值和特征向量求矩阵,只需运用定义得出方程组即可求出结果,较为简单18、(1)(2)见解析.【解析】(1)设椭圆方程为则∴椭圆方程∵直线l平行于OM,且在轴上的截距为m又∴l的方程为:由∵直线l与椭圆交于A、B两个不同点,∴m的取值范围是(2)设直线MA、MB的斜率分别为k1,k2,只需证明k1+k2=0即可设可得而∴k1+k2=0故直线MA、MB与x轴始终围成一个等腰三角形.点睛:解答本题的第一问是,直接依据题设条件建立含方程组,通过解方程组求出基本量,进而确定椭圆的标准方程,再联立直线与椭圆的方程组成的方程组,借助交点的个数建立不等式求出参数的取值范围;求解第二问时,依据题意先将问题转化为证明直线的斜率之和为0的问题来处理,再联立直线与椭圆的方程组成的方程组,借助坐标之间的关系进行推证而获解.19、(1)见解析;(2)平面与平面所成锐二面角的正弦值为.【解析】试题分析:(1)先证得平面,再根据面面垂直的判定定理得出结论;(2)建立合适的空间直角坐标系,分别求出平面AEF和平面ABE的法向量,利用二面角的公式求解即可.试题解析:(1)∵平面,∴平面,又平面,∴平面平面.(2)设与的交点为,建立如图所示的空间直角坐标系,则,∴设平面的法向量为,则,即,令,则,∴.设平面的法向量为,则,即,令,则,∴.∴,∴,∴平面与平面所成锐二面角的正弦值为.20、(1);(2)相切.【解析】
(1)根据互化公式可得;(2)根据点到直线的距离与半径的关系可得.【详解】解:(1)由得,得,即直角坐标方程为:.(2)由,消去得,则圆心到直线的距离等于圆的半径,所以直线与圆相切.【点睛】本题考查了极坐标方程与直角坐标方程的转化,考查了直线与圆的位置关系.一般地,已知极坐标方程时,通过变形整理,将方程中的,分别代换为即可.判断直线与圆的位置关系时,可通过联立方程,由判别式判断交点个数;也可求出圆心到直线的距离,与半径进行比较.21、(1);(2).【解析】
(1)根据条件列方程组,根据首项和公差求通项公式;(2)数列是等比数列,根据等比数列的前项求和公式求解.【详解】设等差数列的首项为,公差,解得:;(2),,是公比为8,首项为的等比数列,.【点睛】本题考查等差和等比数列的基本量的求解,属于基础题型,只需熟记公式.22、(1)见解析;(2).【解析】
(1)根据已知可得和,由线面垂直判定定理可证平面,再由面面垂直判定定理证得平面⊥平面.(2)解法一:向量法,设,以为原点,作,以的方向分别为轴,轴的正方向,建空间直角坐标系,求得的坐标,运用向量的坐标表示和向量的垂直条件,求得平面和平面的的法向量,再由向量的夹角公式,计算即可得到所求的值.解法二:三垂线法,连接AC交BD于O,连接EO、FO,过点F做FM⊥EC于M,连OM,由已知可以证明FO⊥面AEC,∠FMO即为二面角A-EC-F的平面角,通过菱形的性质、勾股定理和等面积法求得cos∠FMO,得到答案.解法三:射影面积法,连接AC交BD于O,连接EO、FO,根据已知条件计算,,二面角的余弦值cosθ=,即可求得答案.【详解】(1)证明:连结四边形是菱形,,⊥平面,平面,,,平面,平面,平面,平面⊥平面.(2)解:解法一:设,四边形是菱形,,、为等边三角形,,是的中点,,⊥平面,,在中有,,,以为原点,作,以的方向分别为轴,轴的正方向,建空间直角坐标系如图所示,则所以,,设平面的法向量为,由得设,解得.设平面的法向量为,由得设,解得.设二面角的为,则结合图可知,二面角的余弦值为.解法二:∵EB⊥面ABCD,∴∠EAB即为EA与平面ABCD所成的角在Rt△EAB中,cos∠EAB=又AB=2,∴AE=∴EB=DF=1连接AC交BD于O,连接EO、FO菱形ABCD中,∠BAD=60°,∴BD=AB=2矩形BEFD中,F
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 春节联欢活动策划
- 多重耐药菌医院感染管理
- AGCAVC培训课件教学课件
- 7s知识培训课件
- 人教版数学六年级下册第四单元比应用题训练含答案
- 汕头市朝阳区重点中学2024-2025学年初三第一次联考英语试题试卷含答案
- 河北省唐山市滦县2024-2025学年中考压轴卷:化学试题试卷含解析
- 西安美术学院《机器学习与深度学习》2023-2024学年第二学期期末试卷
- 管理人员怎么写
- 苏州大学《聚合物合成工艺学》2023-2024学年第一学期期末试卷
- 骨关节病的健康教育
- 静疗横断面调查护理
- DB45T 1056-2014 土地整治工程 第2部分:质量检验与评定规程
- 2025年3月《提振消费专项行动方案》解读学习课件
- 4-6岁幼儿同伴交往能力量表
- 人教版 数学一年级下册 第三单元 100以内数的认识综合素养评价(含答案)
- 无锡诺宇医药科技有限公司放射性药物开发及核药装备研制项目报告表
- T-CEPPC 18-2024 电力企业数字化转型成熟度评价指南
- 2025年河南艺术职业学院单招职业技能测试题库及参考答案
- XX化工企业停工安全风险评估报告
- 2025年济源职业技术学院单招职业技能测试题库学生专用
评论
0/150
提交评论