版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省榆林市玉林第十二中学2022-2023学年高二数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设向量不共面,则下列集合可作为空间的一个基底的是
(
)A.B.C.
D.参考答案:D略2.若圆的方程为(为参数),直线的方程为(t为参数),则直线与圆的位置关系是(
)A
相交过圆心
B相交而不过圆心
C
相切
D
相离参考答案:B3.已知a,b,c分别为△ABC内角A,B,C的对边,若,b=则a=(
)A. B. C. D.参考答案:D【分析】由已知利用正弦定理可求的值,根据余弦定理可得,解方程可得的值.【详解】,,,由正弦定理,可得:,由余弦定理,可得:,解得:,负值舍去.故选:.【点睛】本题主要考查了正弦定理,余弦定理在解三角形中的应用,考查了方程思想,属于基础题.4.在△ABC中,已知a=8,B=60°,C=75°,则b等于()A.4 B. C.4 D.参考答案:A【考点】正弦定理.【专题】解三角形.【分析】先求得A,进而利用正弦定理求得b的值.【解答】解:A=180°﹣B﹣C=45°,由正弦定理知=,∴b===4,故选A.【点评】本题主要考查了正弦定理的运用.考查了学生对基础公式的熟练应用.5.若方程表示焦点在轴上的双曲线,则满足的条件是(
)A.
且
B.且C.
且
D.
且参考答案:C略6.已知6件产品中有2件次品,其余为合格品,现从这6件产品中任取3件,恰有一件次品的概率为()A. B. C. D.参考答案:B【分析】从这6件产品中任取3件,共有种取法,其中恰有一件次品,共有种取法,利用古典概型的概率计算公式,即可求解.【详解】由题意,现从这6件产品中任取3件,共有种不同的取法,其中恰有一件次品,共有种取法,所以概率为,故选B.【点睛】本题主要考查了古典概型及其概率的计算,以及组合数的应用,其中解答中认真审题,利用组合数的公式,求得基本事件的总数和所求事件所包含的基本事件的个数是解答的关键,着重考查了运算与求解能力,属于基础题.7.双曲线的渐近线的斜率是(
)A. B. C. D.参考答案:C【分析】直接利用渐近线公式得到答案.【详解】双曲线渐近线方程为:答案为C【点睛】本题考查了双曲线的渐近线方程,属于简单题.8.如图,非零向量
(
)A.
B.C.
D.参考答案:A9.已知直线l1:ax+3y+1=0和直线l2:2x+(a+5)y+1=0平行,则a=()A.1 B.﹣6 C.1或﹣6 D.﹣3参考答案:C考点:直线的一般式方程与直线的平行关系.专题:直线与圆.分析:由两直线平行,得到两直线系数间的关系,求解不等式组可得a的值.解答:解:∵直线l1:ax+3y+1=0和直线l2:2x+(a+5)y+1=0平行,∴,解得:a=1或a=﹣6.故选:C.点评:本题考查了直线的一般式方程与直线平行的关系,关键是对条件的记忆与运用,是基础题.10.函数的图像大致为(
)A.
B.
C.
D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.抛物线上到直线的距离最短的点的坐标是
参考答案:(1,1)略12.双曲线的两个焦点为F1、F2,点P在双曲线上,若PF1⊥PF2,则点P到轴的距离为_____________.参考答案:13.双曲线9y2-16x2=144的离心率为
.参考答案:14.已知函数y=f(x)的图象如图,则满足的x的取值范围.参考答案:[﹣2,1)【考点】函数的图象.
【专题】计算题;函数的性质及应用.【分析】解:由题意可知f()≥0,从而可得≤1,解之即可.【解答】解:由题意可知,f(2)<0,∴f()≥0,∴≤1,即≤0,解得,x∈[﹣2,1);故答案为:[﹣2,1).【点评】本题考查了函数的图象的应用及分式不等式的解法与应用.15.已知点满足,则其落在区域的概率等于
.参考答案:16.二进制数110110(2)化为十进制数是_____________.参考答案:5417.已知点P是椭圆与圆的一个交点,且2其中F1、F2分别为椭圆C1的左右焦点,则椭圆C1的离心率为
.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.等差数列的各项均为正数,其前项和为,满足,且.⑴求数列的通项公式;⑵设,求数列的最小值项.参考答案:解:⑴由,可得.又,可得.数列是首项为1,公差为1的等差数列,.(4分)⑵根据⑴得,.由于函数在上单调递减,在上单调递增,而,且,,所以当时,取得最小值,且最小值为.即数列的最小值项是.
19.(本小题满分12分)已知椭圆经过点,离心率,直线与椭圆交于,两点,向量,,且.(1)求椭圆的方程;(2)当直线过椭圆的焦点(为半焦距)时,求直线的斜率.
参考答案:⑴;⑵(1)∵
∴∴椭圆的方程为(5分)(2)依题意,设的方程为,由
显然,(8分),由已知得:(12分),解得
20.已知函数.(1)讨论f(x)的单调性;(2)当时,,记函数在上的最大值为m,证明:.参考答案:(1)单调递减区间为,单调递增区间为;(2)见解析.【分析】(1)利用导数求函数的单调性即可;(2)对求导,得,因为,所以,令,求导得在上单调递增,,使得,进而得在上单调递增,在上单调递减;所以,令,求导得在上单调递增,进而求得m的范围.【详解】(1)因为,所以,当时,;当时,,故的单调递减区间为,单调递增区间为.(2)当时,,则,当时,,令,则,所以在上单调递增,因为,,所以存在,使得,即,即.故当时,,此时;当时,,此时.即在上单调递增,在上单调递减.则.令,,则.所以在上单调递增,所以,.故成立.【点睛】本题考查了利用导数求函数的单调性和取值范围,也考查了构造新函数,转化思想,属于中档题.21.(本小题满分12分)某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响.已知某学生只选修甲的概率为0.08,只选修甲和乙的概率是0.12,至少选修一门的概率是0.88,用表示该学生选修的课程门数和没有选修的课程门数的乘积.
记“函数为R上的偶函数”为事件A,求事件A的概率;参考答案:设该学生选修甲、乙、丙的概率分别为x、y、z
依题意得
若函数为R上的偶函数,则=0
当=0时,表示该学生选修三门功课或三门功课都没选.
=0.4×0.5×0.6+(1-0.4)(1-0.5)(1-0.6)=0.24
∴事件A的概率为0.24。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10分略22.已知f(x)为定义在[-1,1]上的奇函数,当时,函数解析式为.(1)求b的值,并求出f(x)在(0,1]上的解析式;(2)若对任意的,总有,求实数a的取值范围.参考答案:(1)因为函数为定义在上的奇函数,当时,函数解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度企业环境保护责任合同
- 瓷制球形把手市场发展现状调查及供需格局分析预测报告
- 通风用气动叶轮市场环境与对策分析
- 2024年度互联网旅游服务平台合同
- 2024年度云计算中心建设及运营合同
- 螺旋输送机市场需求与消费特点分析
- 跑步机市场需求与消费特点分析
- 2024年度大豆品牌授权合同
- 04版设备采购合同范本
- 2024年度大豆信息化建设合同
- 培训内驱力的课件
- 《智能制造系统》课程标准
- 防火巡查记录表防火检查记录表
- 胸腔积液患者病例讨论
- “校园周边环境安全隐患”自检自查(排查)记录表
- 科研的思路与方法
- 大学生职业生涯规划成长赛道
- 高二上学期日语阅读四篇自测
- 大学生职业生涯规划成长赛道 (第二稿)
- 蓄电池的分类介绍课件
- 呼吸科健康宣教
评论
0/150
提交评论