版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三角形全等的判定
复习课三角形全等的判定
复习课1全等形全等三角形性质判定应用HL全等三角形对应边相等全等三角形对应角相等解决问题SSSSASASAAAS一般三角形直角三角形知识结构图全等形全等三角形性质判定应用HL全等三角形对应边相等全等三角2
三边对应相等的两个三角形全等(可以简写为“边边边”或“SSS”)。ABCDEF在△ABC和△DEF中∴△ABC≌△DEF(SSS)AB=DEBC=EFCA=FD用符号语言表达为:三角形全等判定方法1知识梳理:三边对应相等的两个三角形全等(可以简写为“边边3三角形全等判定方法2用符号语言表达为:在△ABC与△DEF中∴△ABC≌△DEF(SAS)两边和它们的夹角对应相等的两个三角形全等。(可以简写成“边角边”或“SAS”)知识梳理:FEDCBAAC=DF∠C=∠FBC=EF三角形全等判定方法2用符号语言表达为:在△ABC与△DEF4∠A=∠D(已知)AB=DE(已知)∠B=∠E(已知)在△ABC和△DEF中∴△ABC≌△DEF(ASA)
有两角和它们夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”)。用符号语言表达为:FEDCBA三角形全等判定方法3知识梳理:∠A=∠D(已知)在△ABC和△DEF中∴△ABC≌5知识梳理:
思考:在△ABC和△DFE中,当∠A=∠D,∠B=∠E和AC=DF时,能否得到△ABC≌△DFE?三角形全等判定方法4
有两角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)。知识梳理:思考:在△ABC和△DFE中,当∠6知识梳理:ABDABCSSA不能判定全等ABC知识梳理:ABDABCSSA不能判定全等ABC7ABCA′B′C′知识梳理:直角三角形全等判定:HLABCA′B′C′知识梳理:直角三角形全等判定:HL二、几种常见全等三角形基本图形平移二、几种常见全等三角形基本图形平移9旋转旋转10翻折翻折11ACDEFG找找复杂图形中的基本图形设计意图:知道了这几种基本图形,那么在解决全等三角形问题时,就容易从复杂的图形中分解出基本图形,解题就会变得简便。ACDEFG找找复杂图形中的基本图形设计意图:知道了这几种基12典型题型1、证明两个三角形全等2、证明两个角相等3、证明两条线段相等典型题型1、证明两个三角形全等13一、全等三角形性质应用1:如图,△AOB≌△COD,AB=7,∠C=60°则CD=
,∠A=
.ABCDO一、全等三角形性质应用1:如图,△AOB≌△COD,AB=714一、全等三角形性质应用2:已知△ABC≌△DEF,∠
A=60°,∠C=50°则∠E=
.一、全等三角形性质应用2:已知△ABC≌△DEF,∠A=15一、全等三角形性质应用3:如图,△ABC≌△DEF,DE=4,AE=1,则BE的长是()A.5 B.4 C.3 D.2一、全等三角形性质应用3:如图,△ABC≌△DEF,DE=4161、证明两个三角形全等例1:如图,点B在AE上,∠CAB=∠DAB,要使ΔABC≌ΔABD,可补充的一个条件是
.分析:现在我们已知
A→∠CAB=∠DAB①用SAS,需要补充条件AD=AC,
②用ASA,需要补充条件∠CBA=∠DBA,
③用AAS,需要补充条件∠C=∠D,④此外,补充条件∠CBE=∠DBE也可以(?)
SASASAAASS→AB=AB(公共边).AD=AC∠CBA=∠DBA∠C=∠D∠CBE=∠DBE1、证明两个三角形全等例1:如图,点B在AE上,∠CAB=17练习1:如图,AE=AD,要使ΔABD≌ΔACE,请你增加一个条件是
.练习2:如图,已知∠1=∠2,AC=AD,增加下列件:①AB=AE,②BC=ED,③∠C=∠D,④∠B=∠E,其中能使ΔABC≌ΔAED的条件有()个.A.4B.3C.2D.1练习1:如图,AE=AD,要使ΔABD≌ΔACE,请你增加一182.已知:如图,AB=AC,∠1=∠3,请你再添一个条件,使得∠E=∠D?为什么?1.已知:如图,AB=AC,AD=AE,请你再添一个条件,使得∠E=∠D?为什么?
2、证明两个角相等变式题:2.已知:如图,AB=AC,∠1=∠3,请你再添一个条件19∵BE=EB(公共边)又∵AC∥DB(已知)∠DBE=∠CEB(两直线平行,内错角相等)例3:如图,AC∥DB,AC=2DB,E是AC的中点,求证:BC=DE证明:∵AC=2DB,AE=EC(已知)∴DB=ECDB=ECBE=EB∴ΔDBE≌ΔCEB(SAS)∴BC=DE(全等三角形的对应边相等)3、证明两条线段相等∵BE=EB(公共边)又∵AC∥DB(已知)∠DBE=20练习:已知:∠ACB=∠ADB=900,AC=AD,P是AB上任意一点,求证:CP=DP
CABDP设计意图:让学生加深如何通过全等三角形去求证相等线段。练习:CABDP设计意图:让学生加深如何通过全等三角形21例4(2007金华):如图,A,E,B,D在同一直线上,AB=DE,AC=DF,AC∥DF,在ΔABC和ΔDEF,(1)求证:ΔABC≌ΔDEF;(2)你还可以得到的结论是
.(写出一个,不再添加其他线段,不再表注或使用其他字母)(1)证明:∵AC∥DF(已知)∴∠A=∠D(两直线平行,内错角相等)AB=DE(已知)∠A=∠D(已证)AC=DF(已知)∴ΔABC≌ΔDEF(SAS)在ΔABC和ΔDEF中综合题:例4(2007金华):如图,A,E,B,D在同一直线上,22(2)解:根据”全等三角形的对应边(角)相等”可知:②∠C=∠F,③∠ABC=∠DEF,④EF∥BC,⑤AE=DB等①BC=EF,(2)解:根据”全等三角形的对应边(角)相等”可知:②∠C=23综合题:如图,A是CD上的一点,⊿ABC,⊿ADE都是正三角形,求证CE=BDBACDEFG分析:证⊿ABD≌⊿ACE综合题:BACDEFG分析:证⊿ABD≌⊿ACE24变式1:在原题条件不变的前提下,可以探求以下结论:(1)求证:AG=AF;(2)求证:⊿ABF≌⊿ACG;(3)连结GF,求证⊿AGF是正三角形;(4)求证GF//CD变式2:在原题条件下,再增加一个条件,在CE,BD上分别取中点M,N,求证:⊿AMN是正三角形如图,A是CD上的一点,⊿ABC,⊿ADE都是正三角形,求证CE=BDACDEFGB变式1:在原题条件不变的前提下,可以探求以下结论:(1)求证25变式3:如图,点C为线段AB延长线上一点,⊿AMC,⊿BNC为正三角形,且在线段AB同侧,求证AN=MBABCNM分析:此中考题与原题相比较,只是两个三角形的位置不同,此图的两个三角形重叠在一起,增加了难度,其证明方法与前题基本相同,只须证明⊿ABN≌⊿BCM变式3:如图,点C为线段AB延长线上一点,⊿AMC,⊿BNC26变式4:如图,⊿ABD,⊿ACE都是正三角形,求证CD=BEABCDE分析:此题实质上是把题目中的条件B,A,C三点改为不共线,证明方法与前题基本相同.变式4:如图,⊿ABD,⊿ACE都是正三角形,求证CD=BE27变式6:如图,分别以⊿ABC的边AB,AC为一边画正方形AEDB和正方形ACFG,连结CE,BG.求证BG=CEABCFGED分析:此题是把两个三角形改成两个正方形而以,证法类同变式6:如图,分别以⊿ABC的边AB,AC为一边画正方形AE281.证明两个三角形全等,要结合题目的条件和结论,选择恰当的判定方法
2.全等三角形,是证明两条线段或两个角相等的重要方法之一,证明时
①要观察待证的线段或角,在哪两个可能全等的三角形中。②分析要证两个三角形全等,已有什么条件,还缺什么条件。③有公共边的,公共边一定是对应边,有公共角的,公共角一定是对应角,有对顶角,对顶角也是对应角
小结:3.注意正确地书写证明格式(顺序和对应关系).1.证明两个三角形全等,要结合题目的条件和结论,选择恰当的判29例题一:
已知:如图∠B=∠DEF,BC=EF,补充条件求证:ΔABC≌ΔDEFDEFABC(1)若要以“SAS”为依据,还缺条件
_____;
AB=DE(2)若要以“ASA”为依据,还缺条件____;∠ACB=∠DFE(3)若要以“AAS”为依据,还缺条件_____
∠A=∠D(4)若要以“SSS”为依据,还缺条件___
AB=DEAC=DF(5)若∠B=∠DEF=90°要以“HL”为依据,还缺条件_____AC=DF例题一:已知:如图∠B=∠DEF,BC=EF,补充条件求证30例2、如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是拿()去配.例2、如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻31证明题的分析思路:①要证什么②已有什么③还缺什么④创造条件注意1、证明两个三角形全等,要结合题目的条件和结论,选择恰当的判定方法
2、全等三角形,是证明两条线段或两个角相等的重要方法之一,证明时
①要观察待证的线段或角,在哪两个可能全等的三角形中。②有公共边的,公共边一定是对应边,有公共角的,公共角一定是对应角,有对顶角,对顶角也是对应角总之,证明过程中能用简单方法的就不要绕弯路。证明题的分析思路:①要证什么注意1、证明两个三角形全32==__ABCDP例3已知:如图,P是BD上的任意一点AB=CB,AD=CD.求证:PA=PC①要证明PA=PC可将其放在ΔAPB和ΔCPB或ΔAPD和ΔCPD考虑②已有两条边对应相等(其中一条是公共边)
③还缺一组夹角对应相等
若能使∠ABP=∠CBP或∠ADP=∠CDP即可。
创造条件
分析:==__ABCDP例3已知:如图,P是BD上的任意一点AB=33==__ABCDP例3已知:P是BD上的任意一点AB=CB,AD=CD.求证PA=PC证明:在△ABD和△CBD中
AB=CBAD=CDBD=BD∴△ABD≌△CBD(SSS)∴∠ABD=∠CBD
在△ABP和△CBP中
AB=BC∠ABP=∠CBPBP=BP∴△ABP≌△CBP(SAS)∴PA=PC==__ABCDP例3已知:P是BD上的任意一点AB=CB,34例4。已知:如图AB=AE,∠B=∠E,BC=EDAF⊥CD求证:点F是CD的中点分析:要证CF=DF可以考虑CF、DF所在的两个三角形全等,为此可添加辅助线构建三角形全等,如何添加辅助线呢?已有AB=AE,∠B=∠E,BC=ED
怎样构建三角形能得到两个三角形全等呢?连结AC,AD
添加辅助线是几何证明中很重要的一种思路
例4。已知:如图AB=AE,∠B=∠E,BC=EDAF35证明:连结AC和AD∵在△ABC和△AED中,A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 阀体零件夹具课程设计
- 2024年中国呋喃丹市场调查研究报告
- 学生求生技能课程设计
- 团建拓展基地课程设计
- 锻模勾子扳手课程设计
- 锅炉水处理培训课程设计
- 锅炉房热力站课程设计
- 锅炉内胆与夹套课程设计
- 钢结构课程设计屋盖
- 钢结构梯形屋盖课程设计
- 风控平台题准入考试-信息题库(500道)
- ASME材料-设计许用应力
- (2024年)课堂教学与信息技术融合ppt课件pptx
- 叉车考试题库
- 劳动教育教师培训
- 2023年北京市清华附中数学七年级第一学期期末检测模拟试题含解析
- 玻璃镶嵌工艺名称图片
- 化成处理工艺课件
- 2024中考语文《水浒传》历年真题(解析版)
- 机械制造及自动化大专生职业生涯发展展示
- 安徽新时代十年伟大改革
评论
0/150
提交评论