版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.三个数,,之间的大小关系是()A. B.C. D.2.“,”是“双曲线的离心率为”的()A.充要条件 B.必要不充分条件 C.既不充分也不必要条件 D.充分不必要条件3.设为虚数单位,则的展开式中含的项为()A. B. C. D.4.等差数列an中的a2 , A.5 B.4 C.3 D.25.中,边的高为,若,,,,,则()A. B. C. D.6.在下列命题中,①从分别标有1,2,……,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是;②的展开式中的常数项为2;③设随机变量,若,则.其中所有正确命题的序号是()A.② B.①③C.②③ D.①②③7.某三棱锥的三视图如图所示,则该三棱锥的体积为()A. B. C. D.8.数列0,,,,…的一个通项公式是()A. B.C. D.9.已知椭圆的左右焦点分别为,,以为圆心,为直径的圆与椭圆在第一象限相交于点,且直线的斜率为,则椭圆的离心率为A. B. C. D.10.函数的定义域为,导函数在内的图象如图所示.则函数在内有几个极小值点()A.1 B.2 C.3 D.411.若实数满足,则下列关系中不可能成立的是()A. B. C. D.12.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()A.若的观测值为=6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;B.从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;C.若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推判出现错误;D.以上三种说法都不正确.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数与的图象有且只有三个交点,则实数的取值范围为________.14.某学校高三年级700人,高二年级700人,高一年级800人,若采用分层抽样的办法,从高一年级抽取80人,则全校总共抽取______人.15.设,则等于___________.16.设双曲线的离心率为,其渐近线与圆相切,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)第十二届全国人名代表大会第五次会议和政协第十二届全国委员会第五次会议(简称两会)分别于2017年3月5日和3月3日在北京开幕,某高校学生会为了解该校学生对全国两会的关注情况,随机调查了该校200名学生,并将这200名学生分为对两会“比较关注”与“不太关注”两类,已知这200名学生中男生比女生多20人,对两会“比较关注”的学生中男生人数与女生人数之比为,对两会“不太关注”的学生中男生比女生少5人.(1)该校学生会从对两会“比较关注”的学生中根据性别进行分层抽样,从中抽取7人,再从这7人中随机选出2人参与两会宣传活动,求这2人全是男生的概率.(2)根据题意建立列联表,并判断是否有99%的把握认为男生与女生对两会的关注有差异?附:,其中.0.1000.0500.0100.0012.7063.8416.63510.82818.(12分)设数列的前项和为,且满足.(1)若为等比数列,求的值及数列的通项公式;(2)在(1)的条件下,设,求数列的前项和.19.(12分)已知复数.(1)若是纯虚数,求;(2)若,求.20.(12分)已知函数,.(1)若,求函数的图像在点处的切线方程;(2)讨论的单调性.21.(12分)某水产养殖基地要将一批海鲜用汽车从所在城市甲运至销售商所在城市乙,已知从城市甲到城市乙只有两条公路,且运费由水产养殖基地承担.若水产养殖基地恰能在约定日期(×月×日)将海鲜送达,则销售商一次性支付给水产养殖基地万元;若在约定日期前送到,每提前一天销售商将多支付给水产养殖基地万元;若在约定日期后送到,每迟到一天销售商将少支付给水产养殖基地万元.为保证海鲜新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送海鲜,已知下表内的信息:统计信息汽车行驶路线不堵车的情况下到达城市乙所需时间(天)堵车的情况下到达城市乙所需时间(天)堵车的概率运费(万元)公路公路(注:毛利润销售商支付给水产养殖基地的费用运费)(Ⅰ)记汽车走公路时水产养殖基地获得的毛利润为(单位:万元),求的分布列和数学期望.(Ⅱ)假设你是水产养殖基地的决策者,你选择哪条公路运送海鲜有可能让水产养殖基地获得的毛利润更多?22.(10分)已知函数f(x)=2ln(1)当a=2时,求f(x)的图像在x=1处的切线方程;(2)若函数g(x)=f(x)-ax+m在[1e,e]
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
利用指数函数、对数函数的单调性求解【详解】,故故选:A【点睛】本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意指数函数、对数函数的单调性的合理运用.2、D【解析】
当时,计算可得离心率为,但是离心率为时,我们只能得到,故可得两者之间的条件关系.【详解】当时,双曲线化为标准方程是,其离心率是;但当双曲线的离心率为时,即的离心率为,则,得,所以不一定非要.故“”是“双曲线的离心率为”的充分不必要条件.故选D.【点睛】充分性与必要性的判断,可以依据命题的真假来判断,若“若则”是真命题,“若则”是假命题,则是的充分不必要条件;若“若则”是真命题,“若则”是真命题,则是的充分必要条件;若“若则”是假命题,“若则”是真命题,则是的必要不充分条件;若“若则”是假命题,“若则”是假命题,则是的既不充分也不必要条件.3、A【解析】
利用二项展开式,当时,对应项即为含的项.【详解】因为,当时,.【点睛】本题考查二项式定理中的通项公式,求解时注意,防止出现符号错误.4、D【解析】
求导,根据导数得到a2,a4030是方程x【详解】由题意可知:f'x=x2-8x+6,又a2,a4030是函数f∴log2【点睛】本题考查了等差数列的性质,函数的极值,对数运算,综合性强,意在考查学生的综合应用能力.5、D【解析】
试题分析:由,,可知6、C【解析】
根据二项式定理,古典概型,以及正态分布的概率计算,对选项进行逐一判断,即可判断.【详解】对①:从9张卡片中不放回地随机抽取2次,共有种可能;满足2张卡片上的数奇偶性不同,共有种可能;根据古典概型的概率计算公式可得,其概率为,故①错误;对②:对写出通项公式可得,令,解得,即可得常数项为,故②正确;对③:由正态分布的特点可知,故③正确.综上所述,正确的有②③.故选:C.【点睛】本题考查古典概型的概率计算,二项式定理求常数项,以及正态分布的概率计算,属综合性基础题.7、A【解析】
由正视图和侧视图得三棱锥的高,由俯视图得三棱锥底面积,再利用棱锥的体积公式求解即可.【详解】由三棱锥的正视图和侧视图得三棱锥的高,由俯视图得三棱锥底面积,所以该三棱锥的体积.故选:A【点睛】本题主要考查三视图和棱锥的体积公式,考查学生的空间想象能力,属于基础题.8、A【解析】在四个选项中代n=2,选项B,D是正数,不符,A选项值为,符合,C选项值为,不符.所以选A.【点睛】对于选择题的选项是关于n的关系式,可以考虑通过赋特殊值检验法,来减少运算,或排除选项.9、D【解析】
利用直角三角形的边角关系、椭圆的定义离心率计算公式即可得出.【详解】在Rt△PF1F2中,∠F1PF2=90°,直线的斜率为故得到∠POF2=60°,∴|PF2|=c,由三角形三边关系得到|PF1|=,又|PF1|+|PF2|=2a=c+,∴.故选:D.【点睛】本题考查椭圆的几何性质及其应用,求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,结合转化为的齐次式,然后等式(不等式)两边分别除以或转化为关于的方程(不等式),解方程(不等式)即可得(的取值范围).10、A【解析】
直接利用极小值点两侧函数的单调性是先减后增,对应导函数值是先负后正,再结合图像即可得出结论.【详解】因为极小值点两侧函数的单调性是先减后增,对应导函数值是先负后正,由图得:导函数值先负后正的点只有一个,故函数在内极小值点的个数是1.故选:A【点睛】本题考查了极小值点的概念,需熟记极小值点的定义,属于基础题.11、D【解析】
根据题意,结合对数函数的性质,依次分析选项,综合即可得答案.【详解】根据题意,实数,满足,对于,若,均大于0小于1,依题意,必有,故有可能成立;对于,若,则有,故有可能成立;对于,若,均大于1,由,知必有,故有可能成立;对于,当时,,,不能成立,故选.【点睛】本题考查对数函数的单调性,注意分类讨论、的值,属于中档题.12、C【解析】试题分析:要正确认识观测值的意义,观测值同临界值进行比较得到一个概率,这个概率是推断出错误的概率,若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推判出现错误,故选C.考点:独立性检验.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
令,求导数,从而确定函数的单调性及极值,从而求出a的范围.【详解】由题意得,,
,令,则令,解得:或,
令,解得:,
在上是增函数,在上是减函数,在上是增函数,
,
,且当时,,当时,
所以函数与的图象有且只有三个交点,
则只需和图象有且只有三个交点,
故
故答案为:【点睛】本题考查了函数的单调性、极值问题,考查导数的应用以及转化思想,属于难题.14、220.【解析】分析:根据学生的人数比,利用分层抽样的定义即可得到结论.详解:设全校总共抽取n人,则:故答案为220人.点睛:本题主要考查分层抽样的应用,根据条件建立比例关系是解决本题的关键,比较基础.15、【解析】
根据微积分基本定理可得,再结合函数解析式,根据牛顿莱布尼茨定理计算可得;【详解】解:因为所以故答案为:【点睛】本题考查利用定积分求曲边形的面积,属于基础题.16、【解析】
写出双曲线的渐近线方程,将渐近线与圆相切,转化为圆心到渐近线的距离等于圆的半径,于此可求出的值.【详解】由题意可知,双曲线的渐近线方程为,即,且,圆心到渐近线的距离为,化简得,解得,故答案为.【点睛】本题考查双曲线的几何性质,考查双曲线的渐近线以及直线与圆相切的问题,问题的关键就是将双曲线的渐近线方程表示出来,同时也要注意直线与圆相切的转化,考查计算能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)没有99%的把握认为男生与女生对两会的关注有差异;(2).【解析】【试题分析】(1)可先设男生比较关注和不太关注的人分别为,则女生比较关注和不太关注的为,建立方程组,由此可得列联表为:,然后运用计算公式算出,借助表中的参数可以断定没有99%的把握认为男生与女生对两会的关注有差异;(2)先由分层抽样的知识点算得:在男生和女生中分别抽取的人数为4人、3人,再运用古典概型的计算公式算得其概率.解:(1)设男生比较关注和不太关注的人分别为,则女生比较关注和不太关注的为,则由题意得:,因此可得列联表为:∴,所以没有99%的把握认为男生与女生对两会的关注有差异.(2)由分层抽样的知识点可得:在男生和女生中分别抽取的人数为4人、3人.则.18、(1),;(2).【解析】
(1)利用和关系得到,验证时的情况得到,再利用等比数列公式得到数列的通项公式.(2)计算数列的通项公式,利用分组求和法得到答案.【详解】(1)当时,,当时,,与已知式作差得,即,欲使为等比数列,则,又.故数列是以为首项,2为公比的等比数列,所以.(2)由(1)有得..【点睛】本题考查了等比数列的通项公式,分组求和法求前n项和,意在考查学生的计算能力.19、(1);(2)或1-2i.【解析】分析:(1)根据纯虚数的定义得到,解不等式组即得a的值.(2)由题得,解之得a的值,再求.详解:(1)若是纯虚数,则,所以(2)因为,所以,所以或.当时,,当时,.点睛:(1)本题主要考查复数的概念、复数的模和共轭复数,意在考查学生对这些知识的掌握水平和基本的运算能力.(2)复数为纯虚数不要把下面的b≠0漏掉了.20、(1);(2)当时,的递增区间是,当时,的递增区间是,递减区间是.【解析】
(1)求出,当时,求出,写出切线的点斜式方程,整理即可;(2)求出的定义域,(或)是否恒成立对分类讨论,若恒成立,得到单调区间,若不恒成立,求解,即可得到结论.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年中国纯棉毛巾被数据监测研究报告
- 2025至2030年中国柜式消防排烟风机数据监测研究报告
- 2025至2030年中国可冲洗式随身接尿器数据监测研究报告
- 2025年中国钾复合肥市场调查研究报告
- 2025年中国低噪声变风量风机箱市场调查研究报告
- 不同剂量BaP调控AhR与XRE1或XRE3的结合影响肝脏脂质代谢的分子机制
- 2025年度门面房出租合同(含物业维护升级及租金递增协议)2篇
- 2025年度体育赛事临时看台搭建与拆除合同协议书3篇
- 二零二五年度新能源投资合作出资协议范本4篇
- 二零二四年度智能安防系统设计与实施合同
- 2023-2024学年度人教版一年级语文上册寒假作业
- 2024医疗销售年度计划
- 税务局个人所得税综合所得汇算清缴
- 人教版语文1-6年级古诗词
- 上学期高二期末语文试卷(含答案)
- 软件运维考核指标
- 七年级下册英语单词默写表直接打印
- 2024版医疗安全不良事件培训讲稿
- 中学英语教学设计PPT完整全套教学课件
- 移动商务内容运营(吴洪贵)项目五 运营效果监测
- 比较思想政治教育学
评论
0/150
提交评论