版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三章内压薄壁容器的应力分析
主要介绍回转壳体的概念、应力分析,结论薄膜应力理论的推导和应用。第三章内压薄壁容器的应力分析主要介绍回转壳1第一节回转壳体的应力分析
一、薄壁容器及其应力的特点(一)薄壁容器:δ/Dimax<0.1;K=D0/Dimax<1.2第一节回转壳体的应力分析一、薄壁容器及其应力的特点(一2第一节回转壳体的应力分析
一、薄壁容器及其应力的特点(二)薄壁容器的应力特点1、筒体的主要部分两向应力。设备的主体部分应力状态。薄膜应力——定量计算(※)2、除有两向应力外,增加封头的弯曲作用。应力复杂。边缘应力——定性分析第一节回转壳体的应力分析一、薄壁容器及其应力的特点(二3第一节回转壳体的应力分析
二、概念和基本假设(一)概念1、回转壳体:平面内平滑曲线绕平面内固定轴线旋转360°形成的壳体。没有拐点第一节回转壳体的应力分析二、概念和基本假设(一)概念4第一节回转壳体的应力分析
二、概念和基本假设(一)概念1、回转壳体:(1)曲线有拐点(2)回转轴不固定第一节回转壳体的应力分析二、概念和基本假设(一)概念5第一节回转壳体的应力分析
二、概念和基本假设(一)概念2、轴对称:指几何形状、约束条件、所受外力对称于回转轴。即:同一纬度上各点的应力状态相同,便于设计。第一节回转壳体的应力分析二、概念和基本假设(一)概念6第一节回转壳体的应力分析
二、概念和基本假设(一)概念3、中间面:指与壳体的内外表面等距的曲面。第一节回转壳体的应力分析二、概念和基本假设(一)概念7第一节回转壳体的应力分析
二、概念和基本假设(一)概念4、母线:指形成回转壳体的平面曲线。第一节回转壳体的应力分析二、概念和基本假设(一)概念8第一节回转壳体的应力分析
二、概念和基本假设(一)概念5、经线:通过回转轴的平面与一侧回转面的割(交)线。第一节回转壳体的应力分析二、概念和基本假设(一)概念9第一节回转壳体的应力分析
二、概念和基本假设(一)概念5、经线:指出任意点的经线。第一节回转壳体的应力分析二、概念和基本假设(一)概念10第一节回转壳体的应力分析
二、概念和基本假设(一)概念6、法线:通过曲面上的一点并垂直于曲面的直线称为曲面在该点的法线。第一节回转壳体的应力分析二、概念和基本假设(一)概念11第一节回转壳体的应力分析
二、概念和基本假设(一)概念6、法线:指出任意点的法线。第一节回转壳体的应力分析二、概念和基本假设(一)概念12第一节回转壳体的应力分析
二、概念和基本假设(一)概念7、纬线:过回转轴上一点做母线的垂线,以该垂线为母线,壳体回转轴为轴,所形成的锥面与壳体的割(交)线。第一节回转壳体的应力分析二、概念和基本假设(一)概念13第一节回转壳体的应力分析
二、概念和基本假设(一)概念7、纬线与平行圆(垂直于回转轴的平面与壳体的割线叫平行圆)第一节回转壳体的应力分析二、概念和基本假设(一)概念14第一节回转壳体的应力分析
二、概念和基本假设(一)概念8、第一曲率半径R1:过该点的经线在该点的曲率半径。第一节回转壳体的应力分析二、概念和基本假设(一)概念15第一节回转壳体的应力分析
二、概念和基本假设(一)概念例题1:求圆筒,圆锥,圆球上A、B、C点的第一曲率半径。第一节回转壳体的应力分析二、概念和基本假设(一)概念16第一节回转壳体的应力分析
二、概念和基本假设(一)概念9、第二曲率半径R2:过该点垂直于经过该点经线的平面与壳体的割(交)线在该点的曲率半径。第一节回转壳体的应力分析二、概念和基本假设(一)概念17第一节回转壳体的应力分析
二、概念和基本假设(一)概念例题2:求圆筒,圆锥,圆球上A、B、C点的第二曲率半径。第一节回转壳体的应力分析二、概念和基本假设(一)概念18第一节回转壳体的应力分析
二、概念和基本假设(二)应力分析的基本假定把工程实际中的对结果影响较小因素忽略,以简化理论分析的复杂性。——工程思想1、小位移假设:受内压膨胀变形量与半径之比可以忽略不记。简化微分阶数。第一节回转壳体的应力分析二、概念和基本假设(二)应力分19第一节回转壳体的应力分析
二、概念和基本假设(二)应力分析的基本假定
2、直法线假设:曲面上任意一点的法线在受力后与受力前是同一条直线。计算角度的基准不变,减少角度的微分量。第一节回转壳体的应力分析二、概念和基本假设(二)应力分20第一节回转壳体的应力分析
二、概念和基本假设(二)应力分析的基本假定
3、不挤压假设:壳体在膨胀后纤维互相不挤压,在法线方向不存在应力。三向应力状态可以简化为两向应力状态,即平面问题。第一节回转壳体的应力分析二、概念和基本假设(二)应力分21第一节回转壳体的应力分析
三、经向应力的计算公式—区域平衡※容器壁厚为δ,M点处中间面平行圆直径为D,M点第二曲率半径为R2,假设第二曲率半径与回转轴的夹角为θ。承受气体内压为p,为什么容器没有被炸飞?第一节回转壳体的应力分析三、经向应力的计算公式—区域平22第一节回转壳体的应力分析
三、经向应力的计算公式—区域平衡※因为容器在受到内压(外部激励)的同时在金属内部产生应力。要求得经向应力的大小,选取任一点M取分离体,根据二力平衡原理可以得到经向应力。第一节回转壳体的应力分析三、经向应力的计算公式—区域平23第一节回转壳体的应力分析
三、经向应力的计算公式—区域平衡向下的力因内压引起:F=(πD2P)/4向上的力为应力集中力在竖直方向的分力为:F=σm·πDδ·sinθ根据力平衡条件:(πD2p)/4=σmπDδ·sinθ根据D=2R2sinθ代入上式σm=pR2/2δ第一节回转壳体的应力分析三、经向应力的计算公式—区域平24第一节回转壳体的应力分析
三、经向应力的计算公式—区域平衡例题3:求三个截面处的经向应力。解:M点向上的力因内压引起:F=(πD2p)/4向下的力为应力集中力F=σm·πDδ根据力平衡条件及D=2R2(πD2p)/4=σm·πDδσm=pD/4δ=pR2/2δM点、N点、H点情况相同。为简化分析过程,忽略壳体重量:看某一位置是否具有应力作用,可以通过观察该位置在该方向上是否起到约束作用。第一节回转壳体的应力分析三、经向应力的计算公式—区域平25第一节回转壳体的应力分析
三、经向应力的计算公式—区域平衡例题4:求三个截面处的经向应力。解:M点向上的力因内压引起:F=(πD2p)/4向下的力为应力集中力F=σm·πDδ根据力平衡条件及D=2R2(πD2p)/4=σm·πDδσm=pD/4δ=pR2/2δM点、N点、H点情况相同。第一节回转壳体的应力分析三、经向应力的计算公式—区域平26第一节回转壳体的应力分析
三、经向应力的计算公式—区域平衡例题5:求三个截面处的经向应力。解:M点,无约束,σm=0N点,向下的力因液体重量引起F=(πD2h·γ)/4向上的力为应力集中力F=σm·πDδ根据力平衡条件及D=2R2(πD2h·γ)/4=σm·πDδσm=h·γ
D/4δN点、H点情况相同第一节回转壳体的应力分析三、经向应力的计算公式—区域平27第一节回转壳体的应力分析
三、经向应力的计算公式—区域平衡例题6:求三个截面处的经向应力。解:M点:该位置未起到约束作用σm=0N点:该位置未起到约束作用σm=0H点:该位置未起到约束作用σm=0第一节回转壳体的应力分析三、经向应力的计算公式—区域平28第一节回转壳体的应力分析
四、环向应力的计算公式—微体平衡已求得经向应力σm=pR2/2δ,求环向应力,取小微分体,如图所示。第一节回转壳体的应力分析四、环向应力的计算公式—微体平29第一节回转壳体的应力分析
四、环向应力的计算公式—微体平衡已求得经向应力σm=pR2/2δ,求环向应力,取小微分体,如图所示。1、沿法线向外的力由内压引起2、沿法线向内的力有两部分第一节回转壳体的应力分析四、环向应力的计算公式—微体平30第一节回转壳体的应力分析
四、环向应力的计算公式—微体平衡已求得经向应力σm=pR2/2δ,求环向应力,取小微分体,如图所示。第一节回转壳体的应力分析四、环向应力的计算公式—微体平31第一节回转壳体的应力分析
四、环向应力的计算公式—微体平衡例题7:如图所示,求三个截面处的环向应力解:M点,根据微体平衡M点第一曲率半径M点、N点、H点情况相同第一节回转壳体的应力分析四、环向应力的计算公式—微体平32第一节回转壳体的应力分析
四、环向应力的计算公式—微体平衡例题8:如图所示,求三个截面处的环向应力解:M点,未承载,双向应力为0N点第一曲率半径H点第一曲率半径第一节回转壳体的应力分析四、环向应力的计算公式—微体平33第一节回转壳体的应力分析
四、环向应力的计算公式—微体平衡例题9:如图所示,求三个截面处的环向应力解:M点,未承载,双向应力为0N点第一曲率半径H点第一曲率半径第一节回转壳体的应力分析四、环向应力的计算公式—微体平34第一节回转壳体的应力分析
四、环向应力的计算公式—微体平衡例题10:如图所示,求三个截面处的两向应力解:经向应力各点向下的力因液体重量引起F=(πD2H·γ)/4向上的力为应力集中力F=σm·πDδ根据力平衡条件及D=2R2(πD2H·γ)/4=σm·πDδσm=H·γ
R2/2δ第一节回转壳体的应力分析四、环向应力的计算公式—微体平35第一节回转壳体的应力分析
四、环向应力的计算公式—微体平衡例题10:如图所示,求三个截面处的两向应力解:环向应力A点第一曲率半径B点第一曲率半径C点第一曲率半径第一节回转壳体的应力分析四、环向应力的计算公式—微体平36作业:开口容器,两种悬挂方式,求A、B点的经向和环向应力。(液体的重度为γ)
作业:开口容器,两种悬挂方式,求A、B点的经向和环向应力。(37第二节薄膜理论的应用
一、受气体内压的筒壳对筒壳,环向应力为经向应力的2倍第二节薄膜理论的应用一、受气体内压的筒壳对筒壳,环向应38第二节薄膜理论的应用
一、受气体内压的筒壳问题一:筒壳发生爆炸在哪个方向撕裂?第二节薄膜理论的应用一、受气体内压的筒壳问题一:筒壳39第三章--内压薄壁容器应力分析ppt课件40第三章--内压薄壁容器应力分析ppt课件41第三章--内压薄壁容器应力分析ppt课件42第三章--内压薄壁容器应力分析ppt课件43第三章--内压薄壁容器应力分析ppt课件44第三章--内压薄壁容器应力分析ppt课件45第二节薄膜理论的应用
一、受气体内压的筒壳问题二:圆筒壳上开长圆孔,那种方式合理?第二节薄膜理论的应用一、受气体内压的筒壳问题二:圆筒46第二节薄膜理论的应用
二、受气体内压的球壳对于球壳,环向应力与经向应力相等第二节薄膜理论的应用二、受气体内压的球壳对于球壳,环向47第二节薄膜理论的应用
三、受气体内压的椭球壳1、如果a/b=2,即为标准椭球壳。其图形如果用描点法做不准确,用四心圆代替做法如下:第二节薄膜理论的应用三、受气体内压的椭球壳1、如果a/48第二节薄膜理论的应用
三、受气体内压的椭球壳2、椭球壳理论分析复杂,要求掌握标准椭球壳应力分布特点。危险点为A点:在设计时按照最危险点的标准即可。第二节薄膜理论的应用三、受气体内压的椭球壳2、椭球壳理49第二节薄膜理论的应用
四、受气体内压的锥壳第二节薄膜理论的应用四、受气体内压的锥壳50第二节薄膜理论的应用
四、受气体内压的锥壳R为变量,最大值为D/2
,最小值0。两向应力也存在极值,如图所示。思考题:锥形壳体开孔应在哪开?第二节薄膜理论的应用四、受气体内压的锥壳R为变量,最大51第三章--内压薄壁容器应力分析ppt课件52第二节薄膜理论的应用
五、受气体内压的碟形壳体应力状态复杂,结构存在拐点,现在一般已经不用。碟形壳体制造模具比较容易。现在已经被椭圆壳体取代。第二节薄膜理论的应用五、受气体内压的碟形壳体应力状态复53第二节薄膜理论的应用
五、受气体内压的碟形壳体例题10:有一外径为φ219的气瓶,壁厚为δ=6.5,工作压力15MPa,求气瓶壁应力。第二节薄膜理论的应用五、受
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度版权授权使用合同(含授权范围和费用支付)
- 2024年产品发布会合作合同
- 2024年广州临时工雇佣合同
- 2024年度短视频内容创作与版权交易合同
- 2024年工程吊篮长期租借协议
- 2024年度智能供应链管理软件购买合同
- 2024酒店用品采购合同模板
- 2024年农民工建筑行业用工合同
- 2024【工程劳务分包合同范本】装饰工程分包合同范本3
- 2024年度电力工程吊装安全合同
- GB/T 10193-1997电子设备用压敏电阻器第1部分:总规范
- 基于solidworks flow simulation油浸式变压器散热优化分析
- CPK与CP详细讲解资料(课堂PPT)
- 光动力治疗在气道肿瘤中的临床应用课件
- 小学语文人教三年级上册 群文阅读《奇妙的中心句》
- 大数据和人工智能知识考试题库600题(含答案)
- 2023年上海机场集团有限公司校园招聘笔试题库及答案解析
- 镜头的角度和方位课件
- 污水处理常用药剂简介知识讲解课件
- 五年级上册英语课件-Unit 1《My future》第1课时牛津上海版(三起) (共28张PPT)
- 光交接箱施工规范方案
评论
0/150
提交评论