




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE
11
SEMIE30-1000©SEMI1992,2000
SEMIE30-1000©SEMI1992,2000
PAGE
10
SEMIE30-1000
GENERICMODELFORCOMMUNICATIONSANDCONTROLOFMANUFACTURINGEQUIPMENT(GEM)
ThisstandardwastechnicallyapprovedbytheGlobalInformation&ControlCommitteeandisthedirectresponsibilityoftheNorthAmericanInformation&ControlCommittee.CurrenteditionapprovedbytheNorthAmericanRegionalStandardsCommitteeonJuly14andAugust28,2000.Initiallyavailableat
August2000;tobepublishedOctober2000.Originallypublishedin1992;previouslypublishedJune2000.
CONTENTS
Introduction
RevisionHistory
Scope
Intent
Figure1.1,GEMScope
Overview
Figure1.2,GEMComponents
ApplicableDocuments
Definitions
StateModels
StateModelMethodology
CommunicationsStateModel
Figure3.0,ExampleEquipmentComponentOverview
Figure3.2.1,CommunicationsStateDiagram
Table3.2,CommunicationsStateTransitionTable
ControlStateModel
Figure3.3,ControlStateModel
Table3.3,CONTROLStateTransitionTable
EquipmentProcessingStates
Figure3.4,ProcessingStateDiagram
Table3.4,ProcessingStateTransitionTable
EquipmentCapabilitiesandScenarios
EstablishCommunications
DataCollection
Figure4.2.1,LimitCombinationIllustration:ControlApplication
Figure4.2.2,ElementsofOneLimit
Figure4.2.3,LimitStateModel
Table4.2,LimitStateTransitionTable
AlarmManagement
Figure4.3,StateDiagramforAlarmALIDnTable4.3.1,AlarmStateTransitionTableTable4.3.2
RemoteControl
EquipmentConstants
ProcessProgramManagement
MaterialMovement
EquipmentTerminalServices
ErrorMessages
Clock
Spooling
Figure4.11,SpoolingStateDiagram
Table4.11,SpoolingStateTransition
Control
DataItems
DataItemRestrictions
VariableItemList
CollectionEvents
Table6.1,GEMDefinedCollectionEvents
SECS-IIMessageSubset
STREAM1:EquipmentStatus
STREAM2:EquipmentControlandDiagnosticsSTREAM5:Exception(Alarm)ReportingSTREAM6:DataCollection
STREAM7:ProcessProgramLoadSTREAM9:SystemErrorsSTREAM10:TerminalServicesSTREAM14:ObjectServices
STREAM15:RecipeManagement
GEMCompliance
FundamentalGEMRequirements
Figure8.1,GEMRequirementsandCapabilities
Table8.1,FundamentalGEMRequirements
GEMCapabilities
Table8.2,SectionReferencesforGEMCapabilities
DefinitionofGEMCompliance
Documentation
Figure8.2,HostViewofGEM
Table8.3,GEMComplianceStatement
Table8.4,SMLNotation
ApplicationNotes
FactoryOperationalScript
AnytimeCapabilities
SystemInitializationandSynchronization
ProductionSet-Up
Processing
Post-Processing
EquipmentFrontPanel
DisplaysandIndicators
Switches/Buttons
ExamplesofEquipmentAlarms
TableA.3,AlarmExamplesPerEquipmentConfigura-tion
TraceDataCollectionExample
HarelNotation
FigureA.5.1,HarelStatechartSymbolsFigureA.5.2,ExampleofORSubstatesFigureA.5.3,ExampleofANDSubstates
StateDefinitions
TransitionTable
TableA.5,TransitionTableforMotorExample
ExampleControlModelApplication
ExamplesofLimitsMonitoring
Introduction
Examples
FigureA.7.1,ValveMonitoringExampleFigureA.7.2,EnvironmentMonitoringExampleFigureA.7.3,CalibrationCounterExample
RecipeParameterModificationforProcessandEquipmentControl
Introduction
EquipmentConstants
Example
FigureA.8.1,CMPSingleWafer“Polishing”SystemwithHostRecipeParameterModificationCapability
Index
SEMIE30-1000
GENERICMODELFORCOMMUNICATIONSANDCONTROLOFMANUFACTURINGEQUIPMENT(GEM)
ThisstandardwastechnicallyapprovedbytheGlobalInformation&ControlCommitteeandisthedirectresponsibilityoftheNorthAmericanInformation&ControlCommittee.CurrenteditionapprovedbytheNorthAmericanRegionalStandardsCommitteeonJuly14andAugust28,2000.Initiallyavailableat
August2000;tobepublishedOctober2000.Originallypublishedin1992;previouslypublishedJune2000.
Introduction
RevisionHistory—ThisisthefirstreleaseoftheGEMstandard.
Scope—ThescopeoftheGEMstandardislimitedtodefiningthebehaviorofsemiconductorequipmentasviewedthroughacommunicationslink.TheSEMIE5(SECS-II)standardprovidesthedefinitionofmessagesandrelateddataitemsexchangedbetweenhostandequipment.TheGEMstandarddefineswhichSECS-IImessagesshouldbeused,inwhatsituations,andwhattheresultingactivityshouldbe.Figure1.1illustratestherelationshipofGEM,SECS-IIandothercommunicationsalternatives.
TheGEMstandarddoesNOTattempttodefinethebehaviorofthehostcomputerinthecommunicationslink.ThehostcomputermayinitiateanyGEMmessagescenarioatanytimeandtheequipmentshallrespondasdescribedintheGEMstandard.WhenaGEMmessagescenarioisinitiatedbyeitherthehostorequipment,theequipmentshallbehaveinthemannerdescribedintheGEMstandardwhenthehostusestheappropriateGEMmessages.
Figure1.1GEMScope
Thecapabilitiesdescribedinthisstandardarespecificallydesignedtobeindependentoflower-level
communicationsprotocolsandconnectionschemes(e.g.,SECS-I,SMS,point-to-point,connection-orientedorconnectionless).Useofthosetypesofstandardsisnotrequiredorprecludedbythisstandard.
Thisstandarddoesnotpurporttoaddresssafetyissues,ifany,associatedwithitsuse.Itistheresponsibilityoftheusersofthisstandardtoestablishappropriatesafetyandhealthpracticesanddeterminetheapplicabilityofregulatorylimitationspriortouse.
Intent—GEMdefinesastandardimplementationofSECS-IIforallsemiconductormanufacturingequipment.TheGEMstandarddefinesacommonsetofequipmentbehaviorandcommunicationscapabilitiesthatprovidethefunctionalityandflexibilitytosupportthemanufacturingautomationprogramsofsemiconductordevicemanufacturers.EquipmentsuppliersmayprovideadditionalSECS-IIfunctionalitynotincludedinGEMaslongastheadditionalfunctionalitydoesnotconflictwithanyofthebehaviororcapabilitiesdefinedinGEM.SuchadditionsmayincludeSECS-IImessages,collectionevents,alarms,remotecommandcodes,processingstates,variabledataitems(datavalues,statusvaluesorequipmentconstants),orotherfunctionalitythatisuniquetoaclass(etchers,steppers,etc.)orspecificinstanceofequipment.
GEMisintendedtoproduceeconomicbenefitsforbothdevicemanufacturersandequipmentsuppliers.EquipmentsuppliersbenefitfromtheabilitytodevelopandmarketasingleSECS-IIinterfacethatsatisfiesmostcustomers.DevicemanufacturersbenefitfromtheincreasedfunctionalityandstandardizationoftheSECS-IIinterfaceacrossallmanufacturingequipment.Thisstandardizationreducesthecostofsoftwaredevelopmentforbothequipmentsuppliersanddevicemanufacturers.Byreducingcostsandincreasingfunctionality,devicemanufacturerscanautomatesemiconductorfactoriesmorequicklyandeffectively.TheflexibilityprovidedbytheGEMstandardalsoenablesdevicemanufacturerstoimplementuniqueautomationsolutionswithinacommonindustryframework.
TheGEMstandardisintendedtospecifythefollowing:
AmodelofthebehaviortobeexhibitedbysemiconductormanufacturingequipmentinaSECS-IIcommunicationenvironment,
Adescriptionofinformationandcontrolfunctionsneededinasemiconductormanufacturingenvironment,
AdefinitionofthebasicSECS-IIcommunicationscapabilitiesofsemiconductormanufacturingequipment,
AsingleconsistentmeansofaccomplishinganactionwhenSECS-IIprovidesmultiplepossiblemethods,and
Standardmessagedialoguesnecessarytoachieveusefulcommunicationscapabilities.
TheGEMstandardcontainstwotypesofrequirements:
fundamentalGEMrequirementsand
requirementsofadditionalGEMcapabilities.
ThefundamentalGEMrequirementsformthefoundationoftheGEMstandard.TheadditionalGEMcapabilitiesprovidefunctionalityrequiredforsometypesoffactoryautomationorfunctionalityapplicabletospecifictypesofequipment.AdetailedlistofthefundamentalGEMrequirementsandadditionalGEMcapabilitiescanbefoundinChapter8,GEMCompliance.Figure1.2illustratesthecomponentsoftheGEMstandard.
Figure1.2GEMComponents
EquipmentsuppliersshouldworkwiththeircustomerstodeterminewhichadditionalGEMcapabilitiesshouldbeimplementedforaspecifictypeofequipment.BecausethecapabilitiesdefinedintheGEMstandardwerespecificallydevelopedtomeetthefactoryautomationrequirementsofsemiconductormanufacturers,itisanticipatedthatmostdevicemanufacturerswillrequiremostoftheGEMcapabilitiesthatapplytoaparticulartypeofequipment.SomedevicemanufacturersmaynotrequirealltheGEMcapabilitiesduetodifferencesintheirfactoryautomationstrategies.
Overview—TheGEMstandardisdividedintosectionsasdescribedbelow.
Section1—Introduction
Thissectionprovidestherevisionhistory,scopeandintentoftheGEMstandard.Italsoprovidesanoverviewofthestructureofthedocumentandalistofrelateddocuments.
Section2—Definitions
Thissectionprovidesdefinitionsoftermsusedthroughoutthedocument.
Section3—StateModels
Thissectiondescribestheconventionsusedthroughoutthisdocumenttodepictstatemodels.Italsodescribesthebasicstatemodelsthatapplytoallsemiconductormanufacturingequipmentandthatpertaintomorethanasinglecapability.Statemodelsdescribethebehavioroftheequipmentfromahostperspective.
Section4—CapabilitiesandScenarios
Thissectionprovidesadetaileddescriptionofthecommunicationscapabilitiesdefinedforsemiconductormanufacturingequipment.Thedescriptionofeachcapabilityincludesthepurpose,definitions,requirements,andscenariosthatshallbesupported.
Section5—DataDefinitions
ThissectionprovidesareferencetotheDataItemDictionaryandVariableItemDictionaryfoundinSEMIStandardE5.ThefirstsubsectionshowsthosedataitemsfromSECS-IIwhichhavebeenrestrictedintheiruse(i.e.,allowedformats).ThesecondsubsectionlistsvariabledataitemsthatareavailabletothehostfordatacollectionandshowsanyrestrictionsontheirSECS-IIdefinitions.
Section6—CollectionEvents
Thissectionprovidesalistofrequiredcollectioneventsandtheirassociateddata.
Section7—SECSMessageSubset
ThissectionprovidesacompositelistoftheSECS-IImessagesrequiredtoimplementallcapabilitiesdefinedintheGEMstandard.
Section8—GEMCompliance
ThissectiondescribesthefundamentalGEMrequirementsandadditionalGEMcapabilitiesandprovidesreferencestoothersectionsofthestandardwheredetailedrequirementsarelocated.Thissectionalsodefinesstandardterminologyanddocumentationthatcanbeusedbyequipmentsuppliersanddevicemanufacturerstodescribecompliancewiththisstandard.
SectionA—ApplicationNotes
Thesesectionsprovideadditionalexplanatoryinformationandexamples.
SectionA.1—FactoryOperationalScript
ThissectionprovidesanoverviewofhowtherequiredSECScapabilitiesmaybeusedinthecontextofatypicalfactoryoperationsequence.Thissectionisorganizedaccordingtothesequenceinwhichactionsaretypicallyperformed.
SectionA.2—EquipmentFrontPanel
Thissectionprovidesguidanceinimplementingtherequiredfrontpanelbuttons,indicators,andswitchesasdefinedinthisdocument.Asummaryofthefrontpanelrequirementsisprovided.
SectionA.3—ExamplesofEquipmentAlarms
Thissectionprovidesexamplesofalarmsrelatedtovariousequipmentconfigurations.
SectionA.4—TraceDataCollectionExample
Thissectionprovidesanexampleoftraceinitializationbythehostandtheperiodictracedatamessagesthatmightbesentbytheequipment.
SectionA.5—HarelNotation
ThissectionexplainsDavidHarel’s“Statechart”notationthatisusedthroughoutthisdocumenttodepictstatemodels.
SectionA.6—ExampleControlModelApplication
Thissectionprovidesoneexampleofahost’sinteractionwithanequipment’scontrolmodel.
SectionA.7—ExamplesofLimitsMonitoring
Thissectioncontainsfourlimitsmonitoringexamplestohelpclarifytheuseoflimitsandtoillustratetypicalapplications.
ApplicableDocuments
SEMIStandards—ThefollowingSEMIstandardsarerelatedtotheGEMstandard.ThespecificportionsofthesestandardsreferencedbyGEMconstituteprovisionsoftheGEMstandard.
SEMIE4—SEMIEquipmentCommunicationsStandard1—MessageTransfer(SECS-I)
SEMIE5—SEMIEquipmentCommunicationsStandard2—MessageContent(SECS-II)
SEMIE13—StandardforSEMIEquipmentCommunicationStandardMessageService(SMS)
SEMIE23—SpecificationforCassetteTransferParallelI/OInterface
OtherReferences
Harel,D.,“Statecharts:AVisualFormalismforComplexSystems,”ScienceofComputerProgramming8(1987)231-2741.
NOTE1:Aslistedorrevised,alldocumentscitedshallbethelatestpublicationsofadoptedstandards.
Definitions
alarm—Analarmisrelatedtoanyabnormalsituationontheequipmentthatmayendangerpeople,equipment,ormaterialbeingprocessed.Suchabnormalsituationsaredefinedbytheequipmentmanufacturerbasedonphysicalsafetylimitations.Equipmentactivitiespotentiallyimpactedbythepresenceofanalarmshallbeinhibited.
Notethatexceedingcontrollimitsassociatedwithprocesstolerancedoesnotconstituteanalarmnordonormalequipmenteventssuchasthestartorcompletionofprocessing.
capabilities—Capabilitiesareoperationsperformedbysemiconductormanufacturingequipment.TheseoperationsareinitiatedthroughthecommunicationsinterfaceusingsequencesofSECS-IImessages(orscenarios).Anexampleofacapabilityisthesettingandclearingofalarms.
collectionevent—Acollectioneventisanevent(orgroupingofrelatedevents)ontheequipmentthatisconsideredtobesignificanttothehost.
communicationfailure—Acommunicationfailureissaidtooccurwhenanestablishedcommunicationslinkisbroken.Suchfailuresareprotocolspecific.Refer
1ElsevierScience,P.O.Box945,NewYork,NY10159-0945,
http://www.elvesier.nl/homepage/browse.htt
totheappropriateprotocolstandard(e.g.,SEMIE4orSEMIE37)foraprotocol-specificdefinitionofcommunicationfailure.
communicationfault—Acommunicationfaultoccurswhentheequipmentdoesnotreceiveanexpectedmessage,orwheneitheratransactiontimeroraconversationtimerexpires.
control—Tocontrolistoexercisedirectinginfluence.
equipmentmodel—Anequipmentmodelisadefinitionbasedoncapabilities,scenarios,andSECS-IImessagesthatmanufacturingequipmentshouldperformtosupportanautomatedmanufacturingenvironment.(SeealsoGenericEquipmentModel.)
event—Aneventisadetectableoccurrencesignificanttotheequipment.
GEMcompliance—Theterm“GEMCompliance”isdefinedwithrespecttoindividualGEMcapabilitiestoindicateadherencetotheGEMstandardforaspecificcapability.Section8includesmoredetailonGEMCompliance.
GenericEquipmentModel—TheGenericEquipmentModelisusedasareferencemodelforanytypeofequipment.Itcontainsfunctionalitythatcanapplytomostequipment,butdoesnotaddressuniquerequirementsofspecificequipment.
host—TheSEMIE4andE5standardsdefineHostas“theintelligentsystemthatcommunicateswiththeequipment.”
messagefault—Amessagefaultoccurswhentheequipmentreceivesamessagethatitcannotprocessbecauseofadefectinthemessage.
operationalscript—Anoperationalscriptisacollectionofscenariosarrangedinasequencetypicalofactualfactoryoperations.Examplesequencesaresysteminitializationpowerup,machinesetup,andprocessing.
operator—Ahumanwhooperatestheequipmenttoperformitsintendedfunction(e.g.,processing).Theoperatortypicallyinteractswiththeequipmentviatheequipmentsuppliedoperatorconsole.
processunit—Aprocessunitreferstothematerialthatistypicallyprocessedasaunitviasingleruncommand,processprogram,etc.Commonprocessunitsarewafers,cassettes,magazines,andboats.
processingcycle—Aprocessingcycleisasequencewhereinallofthematerialcontainedina
typicalprocessunitisprocessed.Thisisoftenusedasameasureofactionortime.
scenario—AscenarioisagroupofSECS-IImessagesarrangedinasequencetoperformacapability.Otherinformationmayalsobeincludedinascenarioforclarity.
SECS-I—SEMIEquipmentCommunicationsStandard1(SEMIE4).ThisstandardspecifiesamethodforamessagetransferprotocolwithelectricalsignallevelsbaseduponEIARS232-C.
SECS-II—SEMIEquipmentCommunicationsStandard2(SEMIE5).Thisstandardspecifiesagroupofmessagesandtherespectivesyntaxandsemanticsforthosemessagesrelatingtosemiconductormanufacturingequipmentcontrol.
SMS—SECSMessageService.AnalternativetoSECS-ItobeusedwhensendingSECS-IIformattedmessagesoveranetwork.
statemodel—AStateModelisacollectionofstatesandstatetransitionsthatcombinetodescribethebehaviorofasystem.Thismodelincludesdefinitionoftheconditionsthatdelineateastate,theactions/reactionspossiblewithinastate,theeventsthattriggertransitionstootherstates,andtheprocessoftransitioningbetweenstates.
systemdefault—Referstostate(s)intheequipmentbehavioralmodelthatareexpectedtobeactiveattheendofsysteminitialization.Italsoreferstothevalue(s)thatspecifiedequipmentvariablesareexpectedtocontainattheendofsysteminitialization.
systeminitialization—Theprocessthatanequipmentperformsatpower-up,systemactivation,and/orsystemreset.Thisprocessisexpectedtopreparetheequipmenttooperateproperlyandaccordingtotheequipmentbehavioralmodels.
user—Ahumanorhumanswhorepresentthefactoryandenforcethefactoryoperationmodel.Auserisconsideredtoberesponsibleformanysetupandconfigurationactivitiesthatcausetheequipmenttobestconformtofactoryoperationspractices.
3StateModels
Thefollowingsectionscontainstatemodelsforsemiconductormanufacturingequipment.Thesestatemodelsdescribethebehavioroftheequipmentfromahostperspectiveinacompactandeasytounderstandformat.Statemodelsfordifferentequipmentwillbeidenticalinsomeareas(e.g.,communications),butmayvaryinotherareas(e.g.,processing).Itisdesirabletodividetheequipmentintoparallelcomponentsthatcan
bemodeledseparatelyandthencombined.AnexampleofacomponentoverviewofanequipmentisprovidedasFigure3.0.
Equipmentmanufacturersmustdocumenttheoperation-albehavioroftheirequipmentusingstatemodelmeth-odology.StatemodelsarediscussedinSections3.1and
A.5andinareferencedarticle.Documentationofastatemodelshallincludethefollowingthreeelements:
Astatediagramshowingthepossiblestatesofthesystemorcomponentsofasystemandallofthepossibletransitionsfromonestatetoanother.Thestatesandtransitionsmusteachbelabeled.UseoftheHarelnotation(seeA.5)isrecommended.
Atransitiontablelistingeachtransition,thebeginningandendstates,whatstimulustriggersthetransition,andanyactionstakenasaresultofthetransition.
Adefinitionofeachstatespecifyingsystembehaviorwhenthatstateisactive.
ExamplesoftheaboveelementsareprovidedinSectionA.5.
Figure3.0
ExampleEquipmentComponentOverview
Thebenefitsofprovidingstatemodelsare:
Statemachinemodelsareausefulspecificationtool,
Ahostsystemcananticipatemachinebehaviorbaseduponthestatemodel,
End-usersandequipmentprogrammershaveacommondescriptionofmachinebehaviorfromwhichtowork,
“Legal”operationscanbedefinedpertainingtoanymachinestate,
Externaleventnotificationscanberelatedtointernalstatetransitions,
Externalcommandscanberelatedtostatetransitions,
Statemodelcomponentsdescribingdifferentaspectsofmachinecontrolcanberelatedtooneanother(example:processingstatemodelwithmaterialtransportstatemodel;processingstatemodelwithinternalmachinesafetysystems).
StateModelMethodology—Todocumenttheexpectedfunctionalityofthevariouscapabilitiesdescribedinthisdocument,the“Statechart”notationdevelopedbyDavidHarelhasbeenadopted.AnarticlebyHarelislistedinSection1.5andshouldbeconsidered“must”readingforafullunderstandingofthenotation.Theconventionusedinthisandfollowingsectionsistodescribethedynamicfunctionalityofacapabilitywiththreeitems:atextualdescriptionofeachstateorsubstatedefined,atablethatdescribesthepossibletransitionsfromonestatetoanother,andagraphicalfigurethatusesthesymbolsdefinedbyHareltoillustratetherelationshipsofthestatesandtransitions.Thecombinationoftheseitemsdefinethestatemodelforasystemorcomponent.AsummaryoftheHarelnotationandamoredetaileddescriptionofthetext,table,andfigureusedtodefinebehaviorwiththismethodologyiscontainedintheApplicationNoteA.5.
Thebasicunitofastatemodelisthestate.Astateisastaticsetofconditions.Iftheconditionsaremet,thestateiscurrent.Theseconditionsmightinvolvesensorreadings,switchpositions,timeofday,etc.Alsopartofastatedefinitionisadescriptionofreactionstospecificstimuli(e.g.,ifmessageSx,Fyisreceived,generatereplymessageSx,Fy+1).StimulimaybequitevariedbutforsemiconductorequipmentwouldincludereceivedSECSmessages,expiredtimers,operatorinputatanequipmentterminal,andchangesinsensorreadings.
Tohelpclarifytheinterpretationofthisdocumentandthestatemodelsdescribedherein,itisusefultodistin-guishbetweenastateandaneventandtherelationshipofonetotheother.Aneventisdynamicratherthanstatic.Itrepresentsachangeinconditions,ormorespecifically,theawarenessofsuchachange.Aneventmightinvolveasensorreadingexceedingalimit,aswitchchangingposition,oratimelimitexceeded.
Achangetoanewactivestate(statetransition)mustalwaysbepromptedbyachangeinconditions,andthusanevent.Inaddition,astatetransitionmayitselfbe
termedanevent.Infact,therearemanyeventsthatmayoccuronanequipment,soitisimportanttoclassifyeventsbasedonwhethertheycanbedetectedandwhethertheyareofinterest.Inthisdocument,thetermeventhasbeenmorenarrowlydefinedasadetectableoccurrencethatissignificanttotheequipment.
Afurthernarrowingofthedefinitionofeventisrepre-sentedbytheterm“collectionevent,”whichisanevent(orgroupofrelatedevents)ontheequipmentthatisconsideredsignificanttothehost.Itistheseeventsthat(ifenabled)arereportedtothehost.Bythisdefinition,thelistofcollectioneventsforanequipmentwouldtyp-icallybeonlyasubsetoftotalevents.Thestatemodelsinthisdocumentareintendedtobelimitedtothelevelofdetailinwhichthehostisinterested.Thus,allstatetransitionsdefinedinthisstandard,unlessotherwisespecified,shallcorrespondtocollectionevents.
CommunicationsStateModel—TheCommunicationsStateModeldefinesthebehavioroftheequipmentinrelationtotheexistenceorabsenceofacommunicationslinkwiththehost.Section4.1expandsonthissectionbydefiningtheEstablishCommunicationscapability.Thismodelpertainstoalogicalconnectionbetweenequipmentandhostratherthanaphysicalconnection.
Terminology—Thetermscommunicationfail-ure,connectiontransactionfailure,andcommunicationlinkaredefinedforusewithinthisdocumentonlyandshouldnotbeconfusedwiththesameorsimilartermsusedelsewhere.
SeeSEMIE4(SECS-I)orSEMIE37(HSMS)foraprotocolspecificdefinitionsofcommunicationsfailure.
Aconnectiontransactionfailureoccurswhenattemptingtoestablishcommunicationsandiscausedby
acommunicationfailure,
thefailuretoreceiveanS1,F14replywithinareplytimeoutlimit,or
receiptofS1,F14thathasbeenimproperlyformattedorwithCOMMACK2notsetto0.
Areplytimeoutperiodbeginsafterthesuccessfultransmissionofacompleteprimarymessageforwhichareplyisexpected.(SeeSEMIE4(SECS-I)
orSEMIE37(HSMS)foraprotocol-specificdefinitionofreplytimeout.)
AcommunicationlinkisestablishedfollowingthefirstsuccessfulcompletionofanyoneS1,F13/F14transactionwithanacknowledgementof“accept”.Theestablishmentofthislinkislogicalratherthanphysical.
Implementationsmayhavemechanismswhichallowoutgoingmessagestobestoredtemporarilypriortobeingsent.Thenounqueueisusedtocoversuchstoredmessages.Theyarequeuedwhenplacedwithinthequeueandaredequeuedbyremovingthemfromthisstorage.
Sendincludes“queuetosend”or“begintheprocessofattemptingtosend”amessage.Itdoesnotimplythesuccessfulcompletionofsendingamessage.
Thehostmayattempttoestablishcommunicationswithequipmentatanytimeduetotheinitializationofthehostorbyindependentdetectionofacommunicationsfailurebythehost.Thus,thehostmayinitiateanS1,F13/F14transactionatanytime.
CommDelayTimer—TheCommDelaytimerrepresentsaninternaltimerusedtomeasuretheintervalbetweenattemptstosendS1,F13.ThelengthofthisintervalisequaltothevalueintheEstablishCommuni-cationsTimeout.TheCommDelaytimerisnotdirectlyvisibletothehost.
EstablishCommunicationsTimeoutistheuser-configur-ableequipmentconstantthatdefinesthedelay,inseconds,betweenattemptstosendS1,F13.ThisvalueisusedtoinitializetheCommDelaytimer.
TheCommDelaytimerisinitializedtobegintiming.TheCommDelaytimerisinitializedonlywhenthestateWAITDELAYisentered.
TheCommDelaytimerisexpiredwhenit“timesout,”andthetimeremainingintheintervalbetweenattemptstosendiszero.WhenthetimerexpiresduringthestateWAITDELAY,ittriggersanewattempttosendS1,F13andthetransitiontothestateWAITCRA3.
Conventions
TheattempttosendS1,F13ismadeonlyupontransitintothestateWAITCRA.TheCommDelayTimershouldbesetto“expired”atthistime.
2EstablishCommunicationsAcknowledgeCode,definedinSection
4.1.SeetheSEMIE5StandardforfurtherdefinitionofthisDataItem.
CRAisthemnemonicdefinedforEstablishCommunicationsRequestAcknowledge(S1,F14).
TheCommDelaytimerisinitializedonlyupontransitint
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大学办公室装修协议书
- 租用办学协议书
- 职工劳动协议书
- 负债归属协议书
- 手机店入股合同协议书
- 自考保过协议书
- 夫妻按揭房约定协议书
- 股票账户协议书
- 签订工资协议书
- 赔偿修车协议书
- SL631水利水电工程单元工程施工质量验收标准第1部分:土石方工程
- 广东省2024年中考数学试卷【附真题答案】
- 监控立杆基础国家标准
- 2021年高考地理真题试卷(广东卷)含答案
- 19QAKE质量保证关键要素(Quality Assurance Key Elements)稽核手册
- 下土地岭滑坡稳定性分析及风险计算
- 【小升初】北师大版2022-2023学年安徽省安庆市怀宁县六年级下册数学期末试卷(一)含解析
- 水文专业有偿服务收费管理试行办法(附收费标准)(共42页)
- 篮球--------原地单手肩上投篮 课件(19张幻灯片)
- 肺癌患者护理查房--ppt课件
- 《北京市房屋建筑和市政基础设施工程竣工验收管理办法》(2015年4月1日起实施)
评论
0/150
提交评论