版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
双曲线及其标准方程双曲线及其标准方程1巴西利亚大教堂北京摩天大楼法拉利主题公园花瓶巴西利亚大教堂北京摩天大楼法拉利主题公园花瓶2罗兰导航系统原理反比例函数的图像冷却塔罗兰导航系统原理反比例函数的图像冷却塔3画双曲线演示实验:用拉链画双曲线画双曲线演示实验:用拉链画双曲线4画双曲线演示实验:用拉链画双曲线画双曲线演示实验:用拉链画双曲线5①如图(A),|MF1|-|MF2|=|F2F|=2a②如图(B),上面两条合起来叫做双曲线由①②可得:||MF1|-|MF2||=2a(差的绝对值)|MF2|-|MF1|=|F1F|=2a根据实验及椭圆定义,你能给双曲线下定义吗?①如图(A),|MF1|-|MF2|=|F2F|=2a②如6①两个定点F1、F2——双曲线的焦点;②|F1F2|=2c——焦距.0<2a<2c;
平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于︱F1F2︱)的点的轨迹叫做双曲线.一、双曲线定义(类比椭圆)思考:说明:
||MF1|-|MF2||
=2a(1)两条射线(2)不表示任何轨迹(3)线段F1F2的垂直平分线(3)若2a=0,则轨迹是什么?(1)若2a=2c,则轨迹是什么?(2)若2a>2c,则轨迹是什么?yoF2F1Mx①两个定点F1、F2——双曲线的焦点;②|F1F2|=27xyo
设M(x,y),双曲线的焦距为2c(c>0),F1(-c,0),F2(c,0)F1F2M即
(x+c)2+y2-(x-c)2+y2=+2a_
以F1,F2所在的直线为X轴,线段F1F2的中点为原点建立直角坐标系1.建系.2.设点.3.列式.|MF1|-|MF2|=2a如何求这优美的曲线的方程??4.化简.3.双曲线的标准方程xyo设M(x,y),双曲线的焦F1F2M即8令c2-a2=b2多么美丽对称的图形!yoF1M数学的美!令c2-a2=b2多么美丽对称的图形!yoF1M数学的美!9F2F1MxOyOMF2F1xy双曲线的标准方程F2F1MxOyOMF2F1xy双曲线的标准方程10判断:与的焦点位置?思考:如何由双曲线的标准方程来判断它的焦点是在X轴上还是Y轴上?结论:看前的系数,哪一个为正,则焦点在哪一个轴上。判断:与的焦点11?双曲线的标准方程与椭圆的标准方程有何区别与联系??双曲线的标准方程与椭圆的12F(±c,0)F(±c,0)a>0,b>0,但a不一定大于b,c2=a2+b2a>b>0,a2=b2+c2双曲线与椭圆之间的区别与联系||MF1|-|MF2||=2a|MF1|+|MF2|=2a椭圆双曲线F(0,±c)F(0,±c)F(±c,0)F(±c,0)a>0,b>0,但a不一定大于b13已知双曲线的焦点为F1(-5,0),F2(5,0)双曲线上一点到焦点的距离差的绝对值等于6,则
(1)a=_______,c=_______,b=_______
(2)双曲线的标准方程为______________(3)双曲线上一点P,|PF1|=10,
则|PF2|=_________3544或16课堂巩固已知双曲线的焦点为F1(-5,0),F2(5,0)双曲线上14讨论:当取何值时,方程表示椭圆,双曲线,圆。解:由各种方程的标准方程知,当时方程表示的曲线是椭圆当时方程表示的曲线是圆当时方程表示的曲线是双曲线讨论:当取何值时,方程15随堂练习变式:上述方程表示双曲线,则m的取值范围是
__________________m<-2或m>-11.求适合下列条件的双曲线的标准方程①a=4,b=3,焦点在x轴上;②焦点为(0,-6),(0,6),经过点(2,-5)2.已知方程表示焦点在y轴的双曲线,则实数m的取值范围是______________m<-2随堂练习变式:上述方程表示双曲线,则m的取值范围是16三、例题选讲例1已知两定点,动点满足,求动点的轨迹方程例1已知两定点,动点满足,求动点的轨迹方程三、例题选讲例1已知两定点17双曲线定义(带动画)ppt课件18设法一:设法二:设法三:变式已知双曲线上的两点P1、P2的坐标分别为(),(),求双曲线的标准方程。
设法一:设法二:设法三:变式已知双曲线上的两点P1、P1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年股权融资合同:中小企业扩展版图3篇
- 2024设计费合同范本:科技馆互动展项设计专约3篇
- 2024年精炼煤炭购销标准协议模版一
- 2025年度艺术品拍卖居间合同范本3篇
- 2025年度出口合同履行中的汇率波动应对与风险管理协议3篇
- 2024年鱼塘租赁与管理合同典范2篇
- 2025年度绿色厂房租赁中介服务费合同范本3篇
- 2024年物流服务合同:跨境电商B2C业务的物流解决方案
- 2024年高性能计算机硬件采购与销售合同一
- 2024年跨界电商合作框架协议
- 人力资源部各岗位绩效考核表
- 原材料试验工作程序与质量管理制度
- 格力离心机技术服务手册
- 注塑机成型工艺参数表
- 糖厂热力衡算(6000吨每天)
- 燃气有限公司危险作业安全管理规定
- XX镇“我为群众办实事”满意度调查问卷
- 常用吗啡剂量滴定方法ppt课件
- 有关DPM的问题
- 石油石化用化学剂产品质量认可实施细则
- 木地板木基层隐蔽验收记录.doc
评论
0/150
提交评论