简单常用的旋转体课件_第1页
简单常用的旋转体课件_第2页
简单常用的旋转体课件_第3页
简单常用的旋转体课件_第4页
简单常用的旋转体课件_第5页
已阅读5页,还剩45页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

§1简单旋转体§1简单旋转体观察上面的图片,这些图片中的物体具有什么几何结构特征?你能对它们进行分类吗?观察上面的图片,这些图片中的物体具有什么几何结构1.1简单旋转体1.1简单旋转体一、球以半圆的直径所在直线为旋转轴,将半圆旋转所形成的曲面叫作球面。球面所围成的几何体叫做球体,简称球.定义:O球心半径AB一、球以半圆的直径所在直线为旋转轴,将半圆旋转所用一个平面去截一个球,所得截面是什么图形?圆面dRr22dROCOPPC=-=-22OCαPO用一个平面去截一个球,所得截面是什么图形?圆面dRr22OO1AOO1Ao球面被经过球心的平面所截得的圆叫做大圆d球面被不经过球心的截面所截得的圆叫做小圆OCo球面被经过球心的d球面被不经过球心OC某点纬度—经过该点的球半径与赤道面所成的角的度数等于球半径和纬线圈所在平面的半径的夹角。BACORrθ

θ

说明:小圆半径r与球半径R及纬度的关系r=R

×cosθ某点纬度—BACORrθθ说明:例1.在半径是13cm的球面上有A,B,C三点,AB=BC=CA=12cm,求球心到经过这三点的截面的距离.OEABCRrd解:由题AB=BC=CA=12cm△ABC是正三角形则截面圆是△ABC的外接圆,故截面圆半径

则可得

BACABrи=sin21)(34cm=)(1122cmrRd=-=例1.在半径是13cm的球面上有A,B,C三点,OEABC课堂练习用一个平面截半径为25cm的球,截面面积是49πcm2,求球心到截面的距离.变式已知球的半径为25cm,被两个平行平面所截,两个截面的面积分别49πcm2和225πcm2,求两个截面之间的距离.课堂练习用一个平面截半径为25cm的球,截面面积变式已知球的旋转体1、旋转面:一条平面曲线绕着它所在的平面内的一条定直线旋转所形成的曲面叫作旋转面2、旋转体:封闭的旋转面围成的几何体叫旋转体。旋转体1、旋转面:一条平面曲线绕着它所在的平面1、.图(1)是由哪个平面图形旋转得到的()1、.图(1)是由哪个平面图形旋转得到的()二、圆柱、圆锥、圆台二、圆柱、圆锥、圆台圆柱、圆锥、圆台的定义矩形的一边、直角三角形的一条直角边、直角梯形垂直于底边的腰分别以所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体分别叫作圆柱、圆锥、圆台。高:底面:侧面:母线:注意:1、高与母线的不同2、上面三个旋转体的侧面展开图侧面展开图扇环圆柱、圆锥、圆台的定义矩形的一边、直角三角形的一条直角边、直侧面展开图矩形S侧=底面周长×高=2∏rhS全=S侧+2S底侧面展开图矩形S侧=底面周长×高=2∏rhS全=S侧+2S底侧面展开图扇形l弧rhl母侧面展开图扇形l弧rhl母思考3:平行于圆柱底面的截面,经过圆柱任意两条母线的截面分别是什么图形?思考4:经过圆柱的轴的截面称为轴截面,你能说出圆柱的轴截面有哪些基本特征吗?

思考3:平行于圆柱底面的截面,经过圆柱任意两条母线的截面分别简单常用的旋转体ppt课件锥体柱体台体柱、锥、台体的关系上底缩小上底扩大锥柱台柱、锥、台体的关系上底缩小上底扩大AB图1AB图2AB图3例1将下列平面图形绕直线AB旋转一周,所得的几何体分别是什么?理论迁移AB图1AB图2AB图3例1将下列平面图形绕直线A1.下列命题中错误的是()A.圆柱的轴截面是过母线的截面中面积最大的一个B.圆锥的轴截面是所有过顶点的截面中面积最大的一个C.圆台的所有平行于底面的截面都是圆面D.圆锥所有的轴截面是全等的等腰三角形2.下列命题是真命题的是()A以直角三角形的一直角边所在的直线为轴旋转所得的几何体为圆锥;B以直角梯形的一腰所在的直线为轴旋转所得的旋转体为圆柱;C圆柱、圆锥、棱锥的底面都是圆;D有一个面为多边形,其他各面都是三角形的几何体是棱锥。1.下列命题中错误的是()3.下列说法正确的是【】A.平行于圆锥某一母线的截面是等腰三角形B.平行于圆台某一母线的截面是等腰梯形C.过圆锥顶点的截面是等腰三角形D.过圆台上底面中心的截面是等腰梯形4.已知圆柱的底面半径为3cm,,轴截面面积为24cm,则圆柱的母线长为——

5、已知圆锥的轴截面等腰三角形的腰长为5cm,面积为12,求圆锥的底面半径——

3.下列说法正确的是【】6.圆柱的轴截面(经过圆柱的轴所作的截面)是边长为5cm的正方形ABCD,则圆柱侧面上从A到C的最短距离为——7.用一个平行于圆锥底面的平面截这个圆锥,截得圆台上下底面半径的比是1:4,截去的圆锥的母线长是3cm,求圆台的母线长——8、设圆锥母线长为4,高为2,过圆锥的两条母线作一个截面,则截面面积的最大值为——

A、当圆锥的轴截面的顶角a为锐角或直角时,过顶点的所有截面中面积最大的为轴截面,最大值为B、当圆锥的轴截面的顶角a为钝角时,过顶点的所有截面中面积最大不是轴截面,而是使截面为等腰直角三角形的截面,最大值为A、当圆锥的轴截面的顶角a为锐角或直角时,过顶点的所有截面中1.2简单多面体若干个平面多边形围成的几何体其中棱柱、棱锥、棱台是简单多面体叫多面体。我们把1.2简单多面体若干个平面多边形围成的几何体其中棱柱、棱锥、几何体的分类柱体锥体台体球多面体旋转体几何体的分类柱体锥体台体球多面体旋转体矩形ABCD等腰三角形sAB等腰梯形ABCDO圆O各个简单旋转体的轴截面:ABDCSABADCB矩形ABCD等腰三角形sAB等腰梯形ABCDO圆O各个简单旋[知识能否忆起]一、旋转体的形成任一边一条直角边垂直于底边的腰直径[知识能否忆起]一、旋转体的形成任一边一条直角边垂直于底边的表面积、全面积和侧面积表面积:立体图形的所能触摸到的面积之和叫做它的表面积。(每个面的面积相加)全面积全面积是立体几何里的概念,相对于截面积(“截面积”即切面的面积)来说的,就是表面积总和侧面积指立体图形的各个侧面的面积之和(除去底面)表面积、全面积和侧面积表面积:立体图形的所能触摸到的面积之和1.几何体的表面积

(1)圆柱、圆锥、圆台的侧面展开图分别是

;它们的表面积等于

.各面面积之和矩形扇形扇环形侧面积与底面面积之和1.几何体的表面积各面面积之和矩形扇形扇环形侧面积与底面面积2、分别作出一个圆柱、圆锥、圆台,并找出旋转轴分别经过旋转轴作一个平面,观察得到的轴截面是什么形状的图形.ABCDABCABCD矩形等腰三角形等腰梯形2、分别作出一个圆柱、圆锥、圆台,并找出旋转轴分别经过旋转轴圆柱:如果圆柱的底面半径为r,母线长为l,那么S圆柱侧=

.(类比矩形的面积)ch2πrl知识点一:柱、锥、台、球的表面积与侧面积(1)柱体的侧面积圆柱:如果圆柱的底面半径为r,母线长为l,那么ch2πrl知思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线展开,分别得到什么图形?展开的图形与原图有什么关系?宽=长方形思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线宽=长方形圆柱的侧面展开图是矩形3.圆柱、圆锥、圆台的展开图及表面积求法圆柱O圆柱的侧面展开图是矩形3.圆柱、圆锥、圆台的展开图及表面积求思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线展开,分别得到什么图形?展开的图形与原图有什么关系?扇形思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线扇形圆锥的侧面展开图是扇形O圆锥圆锥的侧面展开图是扇形O圆锥思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线展开,分别得到什么图形?展开的图形与原图有什么关系?扇环思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线扇环OO’圆柱、圆锥、圆台三者的表面积公式之间有什么关系?Or’=r上底扩大Or’=0上底缩小OO’圆柱、圆锥、圆台三者的表面积公式之间有什么关系?Or’例3:圆台的上、下底面半径分别为2和4,高为,求其侧面展开图扇环所对的圆心角分析:抓住相似三角形中的相似比是解题的关键小结:1、抓住侧面展开图的形状,用好相应的计算公式,注意逆向用公式;2、圆台问题恢复成圆锥图形在圆锥中解决圆台问题,注意相似比.答:1800例3:圆台的上、下底面半径分别为2和4,高为,小结:1、弄清楚柱、锥、台的侧面展开图的形状是关键;

2、对应的面积公式C’=0C’=CS圆柱侧=2πrlS圆锥侧=πrlS圆台侧=π(r1+r2)lr1=0r1=r2小结:1、弄清楚柱、锥、台的侧面展开图的形状是关键;C’=0例1:一个正三棱柱的底面是边长为5的正三角形,侧棱长为4,则其侧面积为______;答:60例2:正四棱锥底面边长为6,高是4,中截面把棱锥截成一个小棱锥和一个棱台,求棱台的侧面积例1:一个正三棱柱的底面是边长为5的正三角形,侧棱长为4,则

例3已知棱长为a,各面均为等边三角形的四面体S-ABC,求它的表面积.DBCAS分析:四面体的展开图是由四个全等的正三角形组成.因为BC=a,所以:因此,四面体S-ABC的表面积.交BC于点D.解:先求的面积,过点S作,例3已知棱长为a,各面均为等边三角形的3.1.锥体(棱锥、圆锥)的体积(底面积S,高h)

注意:三棱锥的顶点和底面可以根据需要变换,四面体的每一个面都可以作为底面,可以用来求点到面的距离问题:锥体(棱锥、圆锥)的体积3.1.锥体(棱锥、圆锥)的体积注意:三棱锥的顶点和底面可以定理︰如果一个锥体(棱锥、圆锥)的底面积是S,高是h,那么它的体积是:推论:如果圆锥的底面半径是r,高是h,那么它的体积是:

hSSV锥体=ShV圆锥=πr2hSh定理︰如果一个锥体(棱锥、圆锥)的底面推论:如果圆锥的底面半(1)长方体的体积V长方体=abc=

.(其中a、b、c为长、宽、高,S为底面积,h为高)(2)柱体(圆柱和棱柱)的体积V柱体=Sh.其中,V圆柱=πr2h(其中r为底面半径).Sh知识点二.柱、锥、球的体积(1)长方体的体积Sh知识点二.柱、锥、球的体积RR球的体积:一个半径和高都等于R的圆柱,挖去一个以上底面为底面,下底面圆心为顶点的圆锥后,所得的几何体的体积与一个半径为R的半球的体积相等。探究RR球的体积:一个半径和高都等于R的圆柱,挖去一个探究RRRR第一步:分割O球面被分割成n个网格,表面积分别为:则球的表面积:则球的体积为:设“小锥体”的体积为:O知识点三、球的表面积和体积(第一步:分割O球面被分割成n个网格,则

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论