版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省安阳市第五中学高二数学理知识点试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若复数z满足,则在复平面内z的共轭复数对应的点位于(
)A.第一象限 B.第二象限C.第三象限 D.第四象限参考答案:A【分析】先求出复数z和,再求出在复平面内的共轭复数对应的点的位置得解.【详解】由题得,所以,所以在复平面内的共轭复数对应的点为,在第一象限.故选:A.【点睛】本题主要考查复数的模和复数的除法,意在考查学生对这些知识的理解掌握水平和分析推理能力.2.方程表示圆的条件是(
)A.
B.
C.
D.或参考答案:D3.下列说法正确的是(
)A.命题“若x<1,则﹣≤x≤1”的逆否命题是“若x≥1,则x<﹣1或x≥1”B.命题“?x∈R,ex>0”的否定是“?x∈R,ex≤0”C.“a>0”是“函数f(x)=|(ax﹣1)x|在区间(﹣∞,0)上单调递减”的充要条件D.已知命题p:?x∈R,lnx<lgx;命题q:?x0∈R,x03=1﹣x02,则“(¬p)∨(¬q)为真命题”.参考答案:D【考点】命题的真假判断与应用.【专题】函数的性质及应用.【分析】根据复合命题以及函数的单调性分别对A、B、C、D各个选项进行判断即可.【解答】解:命题“若x<1,则﹣≤x≤1”的逆否命题是“若x<﹣1或x≥1,则x≥1”,故A错误;命题“?x∈R,ex>0”的否定是“?x∈R,ex≤0,故B错误;函数f(x)=|(ax﹣1)x|在区间(﹣∞,0)上单调递减”的充要条件是:a≥0,故C错误;已知命题p:?x∈R,lnx<lgx;由lnx﹣lgx=lnx﹣=lnx(1﹣),∵1﹣>0,∴x>1时,lnx>lgx,0<x<1时,lnx<lgx,故命题p是假命题,¬p是真命题;故不论命题¬q真假,则“(¬p)∨(¬q)总为真命题,故D正确;故选:D.【点评】本题考查了复合命题的判断,考查函数的单调性问题,是一道综合题.4.若则关于的不等式的解集是()A
B
C
D参考答案:C5.从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示,设甲乙两组数据的平均数分别为x甲,x乙,中位数分别为m甲,m乙,则()A.x甲<x乙,m甲>m乙 B.x甲<x乙,m甲<m乙C.x甲>x乙,m甲>m乙 D.x甲>x乙,m甲<m乙参考答案:B【考点】茎叶图.【分析】直接求出甲与乙的平均数,以及甲与乙的中位数,即可得到选项【解答】解:甲的平均数甲=(5+6+8+10+10+14+18+18+22+25+27+30+30+38+41+43)=,乙的平均数乙=(10+12+18+20+22+23+23+27+31+32+34+34+38+42+43+48)=,所以甲<乙.甲的中位数为20,乙的中位数为29,所以m甲<m乙,故选:B.【点评】本题考查茎叶图,众数、中位数、平均数的应用,考查计算能力.6.在△ABC中,角A,B,C的对边分别为a,b,c,且满足a=2bcosC,则△ABC的形状为()A.等腰三角形 B.直角三角形C.等边三角形 D.等腰直角三角形参考答案:A【考点】三角形的形状判断.【分析】利用正弦定理以及三角形的内角和,两角和的正弦函数化简a=2bcosC,求出B与C的关系,即可判断三角形的形状.【解答】解:a=2bcosC,由正弦定理可知,sinA=2sinBcosC,因为A+B+C=π,所以sin(B+C)=2sinBcosC,所以sinBcosC+cosBsinC=2sinBcosC,sin(B﹣C)=0,B﹣C=kπ,k∈Z,因为A、B、C是三角形内角,所以B=C.三角形是等腰三角形.故选:A.7.记集合A={(x,y)|x2+y2≤16},集合B={(x,y)|x+y﹣4≤0,(x,y)∈A}表示的平面区域分别为Ω1,Ω2.若在区域Ω1内任取一点P(x,y),则点P落在区域Ω2中的概率为()A. B. C. D.参考答案:B【考点】几何概型.【分析】由题意,根据几何概型的公式,只要求出平面区域Ω1,Ω2的面积,利用面积比求值.【解答】解:由题意,两个区域对应的图形如图,其中,,由几何概型的公式可得点P落在区域Ω2中的概率为;故选B.【点评】本题考查了几何概型的概率求法,解答本题的关键是分别求出平面区域Ω1,Ω2的面积,利用几何概型公式求值.8.执行如图所示的程序框图,若输入的值为6,则输出S的值为(
)A.105B.16
C.15
D.1参考答案:C9.已知,是两条不同的直线,是一个平面,则下列命题正确的是
A.若,,则
B.若,,则C.若∥,,则∥
D.若∥,∥,则∥参考答案:A10.“若α=,则tanα=1”的逆否命题是()A.若α≠,则tanα≠1
B.若α=,则tanα≠1C.若tanα≠1,则α≠
D.若tanα≠1,则α=
参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.某地区为了解70岁~80岁的老人的日平均睡眠时间(单位:h),随机选择了50位老人进行调查,下表是这50位老人睡眠时间的频率分布表:序号i分组
(睡眠时间)组中值(Gi)频数(人数)频率(Fi)
14,5)4.560.1225,6)5.5100.2036,7)6.5200.4047,8)7.5100.2058,98.540.08在上述统计数据的分析中一部分计算见算法流程图,则输出的S的值为________.参考答案:6.4212.某质点的位移函数是s(t)=2t3,则当t=2s时,它的瞬时速度是
m/s.参考答案:24【考点】变化的快慢与变化率.【专题】计算题;函数思想;定义法;函数的性质及应用.【分析】求解s′(t)=6t2,根据导数的物理意义求解即可得出答案.【解答】解:∵s(t)=2t3,∴s′(t)=6t2,∵t=2s,∴s′(2)=6×4=24,根据题意得出:当t=2s时的瞬时速度是24m/s.故答案为:24.【点评】根据导数的物理意义,求解位移的导数,代入求解即可,力导数的意义即可,属于容易题.13.若从点O所作的两条射线OM,ON上分别有点,与点,,则三角形面积之比.如图,若从点O所作的不在同平面内的三条射线OP,OQ和OR上分别有点,,点,和点,,则类似的结论为________.参考答案:=··由图看出三棱锥及三棱锥的底面面积比为·,又过顶点分别向底面作垂线,得到高的比为,故=··,故答案为=··.14.已知,则的值为_________。参考答案:15.设函数,则
▲
参考答案:0∵∴,∴
16.如图所示,ABCD﹣A1B1C1D1是棱长为a的正方体,M、N分别是下底面的棱A1B1,B1C1的中点,P是上底面的棱AD上的一点,AP=,过P、M、N的平面交上底面于PQ,Q在CD上,则PQ=.参考答案:a【考点】平面与平面平行的性质;棱柱的结构特征.【专题】计算题.【分析】由题设PQ在直角三角形PDQ中,故需要求出PD,QD的长度,用勾股定理在直角三角形PDQ中求PQ的长度.【解答】解:∵平面ABCD∥平面A1B1C1D1,MN?平面A1B1C1D1∴MN∥平面ABCD,又PQ=面PMN∩平面ABCD,∴MN∥PQ.∵M、N分别是A1B1、B1C1的中点∴MN∥A1C1∥AC,∴PQ∥AC,又AP=,ABCD﹣A1B1C1D1是棱长为a的正方体,∴CQ=,从而DP=DQ=,∴PQ===a.故答案为:a【点评】本题考查平面与平面平行的性质,是立体几何中面面平行的基本题型,本题要求灵活运用定理进行证明.17.双曲线的离心率是
参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.某同学在一次研究性学习中发现,以下5个不等关系式子①﹣1>②>③>④>⑤>(1)上述五个式子有相同的不等关系,分析其结构特点,请你再写出一个类似的不等式(2)请写出一个更一般的不等式,使以上不等式为它的特殊情况,并证明.参考答案:【考点】R6:不等式的证明;F1:归纳推理.【分析】(1)观察分析得到结论;(2)利用分析法证明即可.【解答】解:(1)(2)证明:要证原不等式,只需证因为不等式两边都大于0只需证只需证只需证a2+3a+2>a2+3a只需证2>0显然成立所以原不等式成立【点评】本题考查归纳推理,考查分析法的运用,属于中档题.19.(本小题满分10分)选修4—1:几何证明选讲已知PQ与圆O相切于点A,直线PBC交圆于B,C两点,D是圆上一点,且AB∥CD,DC的延长线交PQ于点Q(1)求证:;(2)若,求QD参考答案:(1)………5分20.已知椭圆:的焦距为,离心率为,其右焦点为,过点作直线交椭圆于另一点.(Ⅰ)若,求外接圆的方程;(Ⅱ)若过点的直线与椭圆相交于两点、,设为上一点,且满足(为坐标原点),当时,求实数的取值范围.参考答案:(Ⅰ)由题意知:,,又,解得:椭圆的方程为:
可得:,,设,则,,,,即由,或即,或
①当的坐标为时,,外接圆是以为圆心,为半径的圆,即②当的坐标为时,,,所以为直角三角形,其外接圆
21.已知条件p:实数x满足(x﹣a)(x﹣3a)<0,其中a>0;条件q:实数x满足8<2x+1≤16.(1)若a=1,且“p且q”为真,求实数x的取值范围;(2)若q是p的充分不必要条件,求实数a的取值范围.参考答案:【考点】复合命题的真假;充要条件.【分析】(1)通过解不等式得到条件p:a<x<3a,根据指数函数的单调性得到条件q:2<x≤3,所以a=1时,p:1<x<3,而由p且q为真知p真q真,所以x满足,解该不等式即得实数x的取值范围;(2)若q是p的充分不必要条件,则a满足,解该不等式即得a的取值范围.【解答】解:(1)由(x﹣a)(x﹣3a)<0且a>0,可得a<x<3a;当a=1时,有1<x<3;
由8<2x+1≤16,可得2<x≤3;又由“p且q”为真知,p真且q真,所以实数x的取值范围是(2,3);(2)由q是p的充分不必要条件可知:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度新能源汽车充电站场地租赁与运营管理合同12篇
- 2025年度图书销售合同范本二零二五年度4篇
- 二零二五年度高端餐厅特色菜品定制供应合同3篇
- 专业设备运输协议模板(2024版)
- 2024蓄水池建造与维护一体化服务合同3篇
- 专业用琴租赁协议(2024年度)版B版
- 2025年度茶叶仓储物流配送服务协议4篇
- 2025年度智慧城市建设物联网设备采购与安装服务协议3篇
- 2024限定版户外栏杆施工协议版B版
- 个性化汽车租赁协议模板2024版版
- 安徽省合肥市包河区2023-2024学年九年级上学期期末化学试题
- 《酸碱罐区设计规范》编制说明
- PMC主管年终总结报告
- 售楼部保安管理培训
- 仓储培训课件模板
- 2025届高考地理一轮复习第七讲水循环与洋流自主练含解析
- GB/T 44914-2024和田玉分级
- 2024年度企业入驻跨境电商孵化基地合作协议3篇
- 《形势与政策》课程标准
- 2023年海南省公务员录用考试《行测》真题卷及答案解析
- 桥梁监测监控实施方案
评论
0/150
提交评论