2022-2023学年湖北省荆州市观音垱中学高三数学理上学期期末试卷含解析_第1页
2022-2023学年湖北省荆州市观音垱中学高三数学理上学期期末试卷含解析_第2页
2022-2023学年湖北省荆州市观音垱中学高三数学理上学期期末试卷含解析_第3页
2022-2023学年湖北省荆州市观音垱中学高三数学理上学期期末试卷含解析_第4页
2022-2023学年湖北省荆州市观音垱中学高三数学理上学期期末试卷含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年湖北省荆州市观音垱中学高三数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数f(x)的图象关于y轴对称,且对任意x∈R都有f(x+3)=﹣f(x),若当x∈(,)时,f(x)=()x,则fA.﹣ B. C.﹣4 D.4参考答案:A【考点】函数的值.【分析】推导出f(x+6)=﹣f(x+3)=f(x),当x∈(,)时,f(x)=()x,从而f=f(﹣1)=﹣f(2),由此能求出结果.【解答】解:∵函数f(x)的图象关于y轴对称,且对任意x∈R都有f(x+3)=﹣f(x),∴f(x+6)=﹣f(x+3)=f(x),∵当x∈(,)时,f(x)=()x,∴f=f(﹣1)=﹣f(2)=﹣()2=﹣.故选:A.2.直线交抛物线于A、B两点,且,则直线过定点()A.(1,0)B.(2,0)C.(3,0)D.(4,0)参考答案:B3.已知f(x)是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设,则的大小关系是()A.

B.

C.

D.参考答案:B4.在中,角的对边分别为,且,则的形状是(

)A.正三角形

B.直角三角形

C.等腰三角形

D.等腰直角三角形参考答案:B略5.(5分)设等差数列{an}的前n项和为Sn,且满足S20>0,S21<0,则中最大的项为()A.B.C.D.参考答案:B【考点】:等差数列的性质.【专题】:等差数列与等比数列.【分析】:由等差数列的性质和求和公式易得a10+a11>0且a11<0,可得n≤10时,S10最大,而a10最小,故最大.解:由题意显然公差d<0,∵S20==10(a1+a20)>0,∴a1+a20>0,则a10+a11>0;同理由S21<0可得a1+a21<0,∴a11<0,结合a10+a11>0可得a10>0,∴n≤10时,S10最大,而a10最小,∴最大.故选:B.【点评】:本题考查了等差数列的性质,考查了等差数列的前n项和,属中档题.6.已知向量=(1,﹣2),=(1,1),,=+λ,如果,那么实数λ=()A.4 B.3 C.2 D.1参考答案:C【考点】数量积判断两个平面向量的垂直关系.【分析】先利用平面向量坐标运算法则求出,,再由⊥,利用向量垂直的条件能求出实数λ.【解答】解:∵向量=(1,﹣2),=(1,1),,=+λ,∴=(0,﹣3),=(1+λ,﹣2+λ),∵,∴=0﹣3(﹣2+λ)=0,解得λ=2.故选:C.【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意向量垂直的性质的合理运用.7.已知是两条不同的直线,,则下列命题中正确的是()A.

B.C.

D.参考答案:D8.直线与不等式组表示的平面区域有公共点,则实数m的取值范围是A. B.

C. D.参考答案:D9.如图所示是一个简单几何体的三视图,其正视图与侧视图是边长为2的正三角形,俯视图为正方形,则其体积是

A.

B.

C.

D.

正视图

侧视图

俯视图参考答案:B10.抛物线y2=2px(p>0)的焦点为F,准线为l,A,B是抛物线上的两个动点,且满足∠AFB=.设线段AB的中点M在l上的投影为N,则的最小值是()A. B. C. D.2参考答案:C【考点】抛物线的简单性质.【分析】设|AF|=a、|BF|=b,由抛物线定义结合梯形的中位线定理,得2|MN|=a+b.再由勾股定理得|AB|2=a2+b2,结合基本不等式求得|AB|的范围,从而可得的最小值.【解答】解:设|AF|=a,|BF|=b,A、B在准线上的射影点分别为Q、P,连接AQ、BQ由抛物线定义,得AF|=|AQ|且|BF|=|BP|,在梯形ABPQ中根据中位线定理,得2|MN|=|AQ|+|BP|=a+b.由勾股定理得|AB|2=a2+b2,整理得:|AB|2=(a+b)2﹣2ab,又∵ab≤()2,∴(a+b)2﹣2ab≥(a+b)2﹣2×()2=(a+b)2,则|AB|≥(a+b).∴≥=,即的最小值为.故选C.二、填空题:本大题共7小题,每小题4分,共28分11.已知Sn=3+7+13+…+(2n+2n﹣1),S10=a?b?c,其中a,b,c∈N*,则a+b+c的最小值为

.参考答案:68考点:基本不等式;数列的求和.专题:计算题;等差数列与等比数列.分析:由题意得S10=(2+1)+(4+3)+(8+5)+…+(210+19)=2+4+8+…+210+(1+3+5+…+19)=211﹣2+100=2146;再求2146的质因子,从而解得.解答: 解:由题意,S10=(2+1)+(4+3)+(8+5)+…+(210+19)=2+4+8+…+210+(1+3+5+…+19)=211﹣2+100=2146;又∵2146=2×29×37=1×58×37=1×2×1073=1×29×74=2×29×37;∴a+b+c的最小值为2+29+37=68;故答案为:68.点评:本题考查了等差数列与等比数列前n项和的求法,属于基础题.12.在等差数列中,,则参考答案:解析:设等差数列的公差为,则由已知得解得,所以.13.在等差数列中,,,则

,设,则数列的前项的和

.参考答案:

14.函数的定义域为_____________.参考答案:略15.(5分)(2015?浙江模拟)某空间几何体的三视图(单位:cm)如图所示,则其体积是cm3,表面积是cm2.参考答案:,2【考点】:由三视图求面积、体积.【专题】:空间位置关系与距离.【分析】:由三视图可得该几何体是正方体的内接正四棱锥,由三视图中的数据和间接法求出几何体的体积,再由三角形的面积公式求出表面积.解:由三视图可得,该几何体是棱长为1的正方体的内接正四棱锥,所以此正四棱锥的体积V=1﹣4×=cm3,由图可得正四面体的棱长是,所以表面积S=4××=2cm2.故答案为:;2.【点评】:本题考查了正方体的内接正四棱锥的体积、表面积,解题的关键是由三视图正确还原几何体,并求出几何体中几何元素的长度,考查空间想象能力.16.若向量=(x﹣1,2),=(4,y)相互垂直,则9x+3y的最小值为.参考答案:6略17.若数列为等差数列,为其前n项和,且,则________.参考答案:27;三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题12分)已知命题:<,和命题:,为真,为假,求实数c的取值范围。参考答案:19.(12分)已知双曲线C:(a>0,b>0),其中一个焦点为F(2,0),且F到一条渐近线的距离为.

(1)求双曲线C的方程;

(2)已知直线与双曲线C交于不同的两点A、B,且线段AB的中点在抛物线上,求m的值.参考答案:解:(1)由题意

···················································································4分解得:a=1,c=,∴b2=3方程为:

·················································································6分

(2)设A(x1,y1),B(x2,y2),设中点为M有,得:,即:·······8分由,得:M(0,0)或(,)·······································10分从而m=0或

····················································································12分略20.设均为正实数,且,求的最小值.参考答案:21.如图,在平面四边形ABCD中,AB=-1,BC=+1,CA=3,且角D与角B互补,.

(1)求△ACD的面积;(2)求△ACD的周长。参考答案:22.已知函数,为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论