2022-2023学年福建省泉州市第十中学高一数学理联考试卷含解析_第1页
2022-2023学年福建省泉州市第十中学高一数学理联考试卷含解析_第2页
2022-2023学年福建省泉州市第十中学高一数学理联考试卷含解析_第3页
2022-2023学年福建省泉州市第十中学高一数学理联考试卷含解析_第4页
2022-2023学年福建省泉州市第十中学高一数学理联考试卷含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年福建省泉州市第十中学高一数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图,一个平面图形的斜二测画法的直观图是一个边长为a的正方形,则原平面图形的面积为()A.a2

B.a2C.2a2 D.2a2参考答案:C2.对于函数,下列判断正确的是()A.周期为的奇函数

B.周期为的奇函数C.周期为的偶函数

D.周期为的偶函数参考答案:A3.函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示,则ω,φ的值分别是()A.2,﹣ B.2,﹣ C.4,﹣ D.4,参考答案:A【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式;HL:y=Asin(ωx+φ)中参数的物理意义.【分析】通过图象求出函数的周期,再求出ω,由(,2)确定φ,推出选项.【解答】解:由图象可知:T==,∴T=π,∴ω==2;∵(,2)在图象上,所以2×+φ=2k,φ=2kπ,(k∈Z).∵﹣<φ<,∴k=0,∴φ=.故选:A.4.函数f(x)=x3+3x﹣1在以下哪个区间一定有零点()A.(﹣1,0) B.(0,1) C.(1,2) D.(2,3)参考答案:B【考点】函数零点的判定定理.【专题】函数的性质及应用.【分析】根据函数零点的判定定理将选项中区间的端点值代入验证即可得到答案.【解答】解:∵f(x)=x3+3x﹣1∴f(﹣1)f(0)=(﹣1﹣3﹣1)(﹣1)>0,排除A.f(1)f(2)=(1+3﹣1)(8+6﹣1)>0,排除C.f(0)f(1)=(﹣1)(1+3﹣1)<0,∴函数f(x)在区间(0,1)一定有零点.故选:B.【点评】本题主要考查函数零点的判定定理.属基础题.5.A

二次函数与指数函数的图象,只有可能是下列中的哪个选项参考答案:A略6.已知集合M={(x,y)|x+y=2},N={(x,y)|x﹣y=4},那么M∩N为()A.x=3,y=﹣1 B.(3,﹣1) C.{3,﹣1} D.{(3,﹣1)}参考答案:D【考点】交集及其运算.【专题】计算题.【分析】将集合M与集合N中的方程联立组成方程组,求出方程组的解即可确定出两集合的交集.【解答】解:将集合M和集合N中的方程联立得:,①+②得:2x=6,解得:x=3,①﹣②得:2y=﹣2,解得:y=﹣1,∴方程组的解为:,则M∩N={(3,﹣1)}.故选D【点评】此题考查了交集及其运算,以及二元一次方程组的解法,是一道基本题型,学生易弄错集合中元素的性质.7.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为7人,则样本容量为()A.7

B.25

C.15

D.35参考答案:【知识点】分层抽样方法.C

解:青年职工、中年职工、老年职工三层之比为7:5:3,所以样本容量为

,故选C.【思路点拨】先计算青年职工所占的比例,再根据青年职工抽取的人数计算样本容量即可.【典型总结】本题考查分层抽样的定义和方法,求出每个个体被抽到的概率,用个体的总数乘以每个个体被抽到的概率,就得到样本容量n的值.8.下列集合的表示法正确的是()A.实数集可表示为R;B.第二、四象限内的点集可表示为;C.集合;D.不等式的解集为

参考答案:A9.在△ABC中,角A,B,C所对的边分别为a,b,c,且A是B和C的等差中项,,,则△ABC周长的取值范围是A. B.C. D.参考答案:B分析:由得B角是钝角,由等差中项定义得A为60°,再根据正弦定理把周长用三角函数表示后可求得范围.详解:∵是和的等差中项,∴,∴,又,则,从而,∴,∵,∴,所以的周长为,又,,,∴.故选B.点睛:本题考查解三角形的应用,解题时只要把三角形周长利用正弦定理用三角函数表示出来,结合三角函数的恒等变换可求得取值范围.解题易错的是向量的夹角是B角的外角,而不是B角,要特别注意向量夹角的定义.10.若不等式的解集为R,则实数m的取值范围是(

)A.(2,+∞) B.(-∞,2)C.(-∞,0)∪(2,+∞) D.(0,2)参考答案:D【分析】利用不等式的解集是R,转化为二次函数的函数值大于0恒成立,利用判别式即可求实数m的取值范围.【详解】由题意知不等式的解集为R即的函数值在R上大于0恒成立由二次函数开口向上可知,满足判别式R恒成立即可即,即解得故选:D【点睛】本题考查不等式恒成立条件的应用,将不等式转化为函数问题,考查转化思想以及计算能力,属于基础题.二、填空题:本大题共7小题,每小题4分,共28分11.如图,一个水平放置的平面图形的斜二测直观图是直角梯形,,,则这个平面图形的面积为_____________

参考答案:12.已知f(x)为偶函数,当时,,则不等式的解集为

.参考答案:当时,由,即则,即当时,由,得,解得则当时,不等式的解为则由为偶函数当时,不等式的解为即不等式的解为或则由或解得:或即不等式的解集为

13.在锐角中,则的值等于

,的取值范围为

.

参考答案:2,(1,)略14.在ABC中,M是BC的中点,AM=3,BC=10,则=______________参考答案:-16略15.若二次函数满足,且,则实数的取值范围是_________.参考答案:略16.如图,△ABC中,AB=AC=2,BC=,点D在BC边上,∠ADC=45°,则AD的长度等于______。参考答案:17.已知角终边上一点P的坐标为,则是第____象限角,____·参考答案:四

【分析】根据的正负,判断出所在的象限,由此确定所在象限,根据三角函数的定义求得的值.【详解】由于,所以,故点在第四象限,也即为第四象限角.由三角函数的定义有.【点睛】本小题主要考查弧度制,考查三角函数在各个象限的符号,考查三角函数的定义,属于基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知二次函数满足,且。(1)求的解析式;(2)当时,方程有解,求实数的取值范围;(3)设,,求的最大值.参考答案:解:(1)设代入和并化简得,(2)当时,方程有解即方程在上有解令,则的值域是故的取值范围是(3)对称轴是。当时,即时;当时,即时,综上所述:。略19.如图所示,在三棱柱ABC-A1B1C1中,△ABC与△A1B1C1都为正三角形,且平面ABC,F,F1分别是的中点.求证:(1)平面平面;(2)平面平面.参考答案:(1)见解析.(2)见解析.【分析】(1)由分别是的中点,证得,由线面平行的判定定理,可得平面,平面,再根据面面平行的判定定理,即可证得平面平面.(2)利用线面垂直的判定定理,可得平面,再利用面面垂直的判定定理,即可得到平面平面.【详解】(1)在三棱柱中,因为分别是的中点,所以,根据线面平行的判定定理,可得平面,平面又,∴平面平面.(2)在三棱柱中,平面,所以,又,,所以平面,而平面,所以平面平面.【点睛】本题考查线面位置关系的判定与证明,熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.20.Sn为数列{an}的前n项和,已知对任意,都有,且.(1)求证:{an}为等差数列;(2)设,求数列{bn}的前n项和Tn.参考答案:(1)见解析;(2)【分析】(1)利用与的关系将条件转化为递推关系,化简即可得,即由定义可证.(2)利用等差数列通项公式求出,从而求得,利用裂项求和法即可求出其前项和.【详解】(1),

①当时,

①-②得,即,∵,∴即,∴为等差数列(2)由已知得,即解得(舍)或∴∴∴【点睛】本题主要考查了等差数列证明,以及裂项求和法的应用,属于中档题.等差数列的证明主要有两种方法:(1)定义法,证得即可,其中为常数;(2)等差中项法:证得即可.21.(本小题满分14分)(I)求两条平行直线与之间的距离;(Ⅱ)求两条垂直直线与的交点坐标.参考答案:(I由平行知斜率相等,得;

……(3分)再由平行线的距离公式求得

………………(7分)(Ⅱ)由垂直,得;…………(10分)交点为(-1,0)

………………(14分)22.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,,∠ABC=∠BCD=90°,E为PB的中点。(1)证明:CE∥面PAD(2)若直线CE与底面ABCD所成的角为45°,求四棱锥P-ABCD的体积。参考答案:(1)见解析(2)【分析】(1)取PA中点Q,连接QD,QE,可证四边形CDQE为平行四边形,从而CE∥QD,于是证得线面平行;(2)连接BD,取BD中点O,连接EO,CO,可证EO∥PD,从而得到直线CE与底面ABCD所成的角,求得EO也即能求得PD,最终可得棱锥体积.【详解】解法一:(1)取PA中点Q,连接QD,QE,则QE∥AB,且QE=AB∴QE∥CD,且QE=CD.即四边形CDQE为平行四边形,CE∥QD.又∵CE平面PAD,QD平面PAD,∴CE∥平面PAD.(2)连接BD,取BD中点O,连接EO,CO则EO∥PD,且EO=PD.

∵PD⊥平面ABCD,∴EO⊥平面ABCD.

则CO为CE在平面ABCD上的射影,即∠ECO为直线CE与底面ABCD所成的角,∠ECO=45°

在等腰直角三角形BCD中,BC=CD=2,则BD=2,则在RtΔECO中,∠ECO=45°,EO=CO=BD=2PD=2E0=2,∴

∴四棱锥P-ABCD的体积为.解法二:(1)取AB中点Q,连接QC,QE则QE∥PA∵PA平面PAD,QE平面PAD∴QE∥平面PAD,

又∵AQ=AB=CD,AQ∥CD,∴四边形AQCDカ平行四迹形,则CQ∥DA∵DA平面PAD,CQ平面PAD,∴CQ∥平面PAD,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论