![2015年集课件1 27给定系统是否满足下列性质_第1页](http://file4.renrendoc.com/view/fd215a8643e200a43fb2eb0ca69a89fa/fd215a8643e200a43fb2eb0ca69a89fa1.gif)
![2015年集课件1 27给定系统是否满足下列性质_第2页](http://file4.renrendoc.com/view/fd215a8643e200a43fb2eb0ca69a89fa/fd215a8643e200a43fb2eb0ca69a89fa2.gif)
![2015年集课件1 27给定系统是否满足下列性质_第3页](http://file4.renrendoc.com/view/fd215a8643e200a43fb2eb0ca69a89fa/fd215a8643e200a43fb2eb0ca69a89fa3.gif)
![2015年集课件1 27给定系统是否满足下列性质_第4页](http://file4.renrendoc.com/view/fd215a8643e200a43fb2eb0ca69a89fa/fd215a8643e200a43fb2eb0ca69a89fa4.gif)
![2015年集课件1 27给定系统是否满足下列性质_第5页](http://file4.renrendoc.com/view/fd215a8643e200a43fb2eb0ca69a89fa/fd215a8643e200a43fb2eb0ca69a89fa5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(1)无 (b)y(t)=(1)y(t)只取决于当前的输入,所以是 (2)y1(t)[cos(3t)]x1(t),令x2t)x1(tt0y2t[cos(3t)]x1(tt0,而y1(tt0[cos(3(tt0x1(tt0所以该系统是时变令x3(t令x3(t)ax1(tbx2t)y3(t)=bx2(t))=所以该系统是线性(5)因为-1£cos(3t£1有界,所以系统对于有界输入(3)y1(t)=[cos(3t)]x1(t),y2(t)=[cos(3t)]x2
y(t)
。 x1(t)fiy1(t)=x1(t)dt,x2(t)fiy2(t)=
2(t-t0y2(t)=x1(t-t0)dt=
x1(t)fiy1(t)=x1(t)dt,x2(t)fiy2(t)=x2 x3(t)fiy3(t)=x3(t)dt=(ax1(t)+bx2 -
(1)无 y[n]=x[n-2]-2x[n- y3[n]=x3[n-2]-2x3[n-8]=ax1[n-2]+bx2[n-2]-2ax1[n-3y2[n]=x2[n-2]-2x2[n-8]=x1[n-2-n0]-2x1[n-8-n0 (g)g[n]=x[4n+ x1[n]→g1[n]=x1[4n+1],x2[n]→g2[n]=x2[4n+则当x2[nx1[n-n0]g2[n]=x2[4n+1]=x1[4n+1-n0]≠g1[n-n0]=x1[4(n-n0)+业业x1[n]→g1[n]=x1[4n+1],x2[n]→g2[n]=x2[4n+非因果,因为当nn00时,输出y[n0]与n0之后的输,也必有|g[n]||x[4n1]|非因果,因为当nn00时,输出y[n0]与n0之后的输,也必有|g[n]||x[4n1]|A业业 21
t
x2 x1(t)-x1(t-2)fiy2(t)=y1(t)-y1(t-21 t
2.21计算卷积y[nx[n*(a)x[n]=αnu[n],h[n]=βnu[n],α≠ x[k]h[n-k]=¥
aku[k]bn-ku[n-k =k akbn-k,n=k1- =bn 1-ab=bn+1-an+1b-
CausalLTISystemsDescribedbyDescribeCTsystemsintermsoflinearconstant-coefficientdifferentialequationsDescribeDTsystemsintermsoflinearconstant-coefficientdifferenceequationsyzeLTIsystemsinIntroducesomeoftheimportantideasconcerningsystemsspecifiedbylinearconstant-coefficientdifferentialequations.coefficientdifferentialequationswhichhavebeenintroducedinmathematicscourses.Pleaserecallcoefficientdifferentialequationswhichhavebeenintroducedinmathematicscourses.dvc(t)+1v(t)=1v
dv(t)+rv(t)=1fcsmmdy(t)+ay(t)=csmmdydy(t)+2y(t)=functionoftheInordertoobtainanexplicitexpression,wemustsolvethedifferentialequation findfunctionoftheInordertoobtainanexplicitexpression,wemustsolvethedifferentialequation findasolution,weneedmoreinformationthanthatprovidedbythedifferentialequationalonedydy(t)+2y(t)=Itssolutioniscomposedoftwoy(t)=yh(ty(t)=yh(t)+yp(tThehomogeneousThehomogeneoussolution,oftenreferredtoasthe
yh(t+2y(t)=Theformofthehomogeneoussolution+2y(t)=TheformofthehomogeneoussolutionisalinearcompositionsomeexponentialslikeCeλt,whereλisanThecorrespondingeigenvalueequationisl+2=Thecorrespondinghomogeneoussolution(naturalresponse)isyyh(t)=Ce2Particular Theformoftheparticularsolution,oftenreferredtoasdresponseofthesystem,arerelatedtotheformofinputsignals.Substitutetheformofthe articularsolutioniconcerneddifferentialequationanddecidependingdy(t)+2y(t)=x(t)Supposetheinputsignalx(t)=Theparticularsolutionfort>0hasthefollowingyp(t)=Plugtheinputsignalandthesolutionintothe3Ye3Plugtheinputsignalandthesolutionintothe3Ye3t+2Ye3t=Ke3tY=•5 Theoverally(t)=y(t)+y(t)=Ae-
+KwhichisasumwhichisasumofthehomogeneoussolutionandtheSomependingcoefficientsintheoverallsolutionshouldbedecidedaccordingtotheauxiliaryconditions.Formostpartinthisbook,wewillfocusontheuseofdifferentialequationstodescribecausalLTIsystemsoftheconditionofinitialInthiscase,oftheconditionofinitialForacasualLTIifx(t)=0fort<t0,theny(t)=0fort<y(t)=Ae-2t+Ky(t)=Ae-2t+Ke3t t>5Settingy(0)=0whent=0A=-5Becauseoftheconditionofinitial55y(t)=(-Ke-2t+Ke3t55Generaly(y(n-1)(t)++ay(1)(t)+a10=bx(m)(t)+ Itcanbeexressedsim nma i=b (jjjinwhichaiandbjareconstants,an=Itssolutioniscomposedoftwoparts:thehomogeneoussolutionandtheparticularsolution.y(t)=yh(t)+ypHomogeneousHomogeneousThehomogeneoussolutionisthesolutionofy(n)(t)+y(n-1)(t)++ay(1)(t)+ay(t)=combinationofsomeexponentialslikeCeλt,whereλcombinationofsomeexponentialslikeCeλt,whereλisanThecorrespondingeigenvalueequation
++al+ RelationshipbetweeneigenvaluesandhomogeneouseigenvaluesHomogenoussinglerealCemultiplerealelt tr-1+ tr-2++C1t+C0 apairofcomplexrootsl, =p–jqept[Ccos(qt)+Dsin(qtrootsl, =p–jqept tr-1+ tr-2++C1t+C0)cos tr-1+ tr-2++D1t+D0)sin RelationshipRelationshipbetweeninputandparticularinputParticular tmPtm+ 0isnotantr[Ptm+ 0isaneigenvaluewithamultiplicityofrisnotanPe isasingleeat(Ptr+Ptr-1++Pt+P isaneigenvaluewithamultiplicityofrPcos(bt)+QNoeigenvaluefollowingExamples.Determinethehomogeneoussolutionoffollowing
y(t)+7 y(t)+16 y(t)+12y(t)=x(t) dt2 Theeigenvalueequation3+7l2+16l+12=3+7l2+16l+12=Eigenvaluesarel1=-2(doubleroot),l2=-Thehomogenoussolution3 whereA1,A2,A3are
Example:Determinetheparticularsolutionscorrespondingtothegiveninputsignals. y(t)+2 y(t)+3y(t)= +x(t)dt2 (2)x(t)=etwhenx(t)=tSubstitutingtheinputsignalintotherightsideoftheequation,weget:t2+2t( Forthebalanceoftheequation,since0isnotaneigenvalue,weassumethefollowingparticularsolution:y(t)=Bt2+Bt+ whereB1,B2andB3areSubstitutingtheassumedparticularsolutionintothedifferentialequation,wehave3Bt2+(4B+3B)t+(2B+2B+3B)=t2+BycomparingthecoefficientsontheBycomparingthecoefficientsonthetwosides,itisobvious3B1=14B+3B= +2B2+3B3=B=1,B=2,
=- Theparticularsolutionyy(t)=12p3+t92whenx(t)=
d
y(t)+2
y(t)+3y(t)
Since1isnotaneienvalueweassumethesolutionyp(t)=Be,whereBispending.tSubstitutingtheparticularsolutionintotheequation,weobtain:Bet+2Bet+3Bet=et+3B=3
y(t)=1 Example:AcausalLTIsystemisdescribedbythefollowingconstant-coefficientdifferentialequation y(t)+5 y(t)+6y(t)=x(t)dt2 Pleasedeterminethefullsolutionunderthefollowing(1)(1)x(t)=2et,t‡0;y(0)=2,dy(0)=-(2)x(t)=e-2t,t‡0;y(0)=1,dy(0)=y(y(t)+5dy(t)+6y(t)=x(t)ddt(1)Theeigenvalueequationofthegivendifferentialequationis:
Sothehomogeneoussolutionisy(t)=Ce-
+Ce-2Considertheinput2e-2Lettheparticularsolutionbey(t)=Pe-SubstitutingSubstitutingtheassumedparticularsolutionintothedifferentialequation,wehaveObviously,P=
So,thefullsolutionofthedifferentialequationy(t)=y(t)+y(t)=Ce-
+Ce-3t+e-22
dy(t)=-2Ce-
-3C bythegiveninitialconditions,wedy(0)=-2C-3C-1=-12C1=3,C2=-y(0)=Thesolutionundercondition(1) x x =e-2tt(2)Thehomogeneoussolutionandtheparticularsolutionof dy(t)+ y(t)+6y(t)=dgivendifferentialequationareh12y(t)=(Pt+P)e-ph12y(t)=(Pt+P)e-p10y(t)=yh(t)+ypinwhichy(t)=yh(t)+yp 2=Ce-2t+Ce-3t+te-2t+P 2=(C+P)e-
+Ce-3t+te-
y(t)=(C+P)e-2t+Ce-3t+te- dy(t)=-2(C+P)e-2t-3Ce-
yy(0)=1,dy(0)= accordingtothegiveninitialy(0)=1,dy(0)=we
dy(0)=-2(C+P)-3C+1= C1+P0=,C2=-Thefullsolutionundercondition(2)
Introducesomeoftheimportantideasconcerningsystemsspecifiedbylinearconstant-coefficientdifferencePleaserecallthesolutionoflinearconstant-coefficientdifferenceequationswhichhavebeenintroducedinmathematicscourses.Letusconsideradiscrete-timeLTIsystemdescribedbyanNth-orderconstant-coefficientdifferenceequation.OrOrinasimplifiedNM SolutionofdifferenceequationsissimilartothatofdifferentialDifferenceequationsmaybesolvedbyExample.Adiscrete-timeLTIsystemisdescribedy[n]+3y[n-1]+2y[n-2]=Giventheauxiliaryconditiony[0]=0,y[1]=2,andtheinputsignalx[n]=2nu[n],determinetheoutputy[n].Solution:Accordingtothegiveny[n]=-3y[n-1]-2y[n-Whenn=2,incorporatingtheauxiliaryconditions,wey[2]=-3y[1]-2y[0]+x[2]=-6-0+4=- y[3]=-3y[2]-2y[1]+x[3]=y[4]=-3y[3]-2y[2]+x[4]=-…….Generally,thesolutionofdifferenceequationsiscomposedofthehomogeneoussolutionandtheparticularsolution.Thehomogeneoussolutionisdeterminedbytheeigenvaluesofthedifferenceequation.ThehomogeneousequationN ay[n-k]= TheTheeigenvalueNalNkkThehomogeneoussolutionwhenalleigenvaluesλ1,λ2,…,aresingley[n]=Cln+Cln++Ch Foreigenvalueβ1ofmultiplicityk,thecorrespondingsolution(Cnk1+Cnk2++C)bn Thecorrespondinghomogeneoussolutiontakesasinusoidalformwhentheeigenvaluesarecomplex.Theparticularsolutionisdeterminedbythe locatedontherightsideofthedifferenceequation.Theformoftheparticularsolutioncanbedeterminedaccordingtotheformofthese terms(input). n
++D
1isnotana Da aisnotanExample:Givenadifferencedeterminedetermine Theeigenvaluel1=l2=1,l3=j,l4=-Thehomogeneousy[n]=(Cn+C)(1)n+C( 22
+C(-44jj 2yy[n]=Cn+C+Pcos( h1222P=C3+C4,Q=j(C3-Bytheinitial n=10=2C1+C2-1=0=2C1+C2-1=3C+C-12n=n=n=C1=0,C2=1,P=1,Q= BlockDiagramRepresentationofSystemsDescribedbyDifferentialandDifferenceEquationsBlockdiagramprovidesapictorialrepresentationwhichcanaddtoourunderstandingofthebehaviorandpropertiesofthesesystems.simulationorimplementationofsystemsdescribedbydifferentialanddifferenceequations.Suchrepresentationscansimulationorimplementationofsystemsdescribedbydifferentialanddifferenceequations.Itcanbedirectlytranslatedintoaprogramforthesimulationofsuchasystemonadigitalcomputer.
dy(t)+ay(t)=bx(t)
1 =-
dy(t)=-ay(t)+bx(t)ty(t)=[bx(t)-t d d dt2 — 1a0Payattentiontotheoutputoftheadder,we(t)=-d(t)-(t)+10Rearrangingtheequation,we
y(t)+ dy(t)+ay(t)=1 Somerelatedsignalstounitimpulsefunctionknownassingularityfunctions.HowSomerelatedsignalstounitimpulsefunctionknownassingularityfunctions.HowLTIsystemsrespondtounitimpulsesothersingularityTheUnitImpulseasanIdealizedShortd(t)=limdDDfixx(t)=x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版新型实木地板安装与维护一体化合同
- 2025年在线教育平台课程销售佣金及教学资源合作合同
- 2025年度综合性幼儿园运营管理承包合同
- 2025年激光测距仪、测向仪合作协议书
- 2025年钢铁厂钢筋施工劳务承包合同:成本控制
- 业务部门财务支持计划
- 幼儿园小班的校园文化建设工作计划
- 玩中学学中玩计划
- 细化货物标识与管理的措施计划
- 游戏行业推出创新游戏玩法计划
- 表冷器更换施工方案
- 沥青集料筛分反算计算表格(自动计算)
- 2023年国家护理质量数据平台
- 恶性高热课件
- 真空灭弧室基本知识课件
- 川教版四年级(上、下册)生命生态与安全教案及教学计划附安全知识
- 工龄认定文件
- 教师招聘考试历年真题(物理)及答案
- 给药护理 口服给药法
- 初中历史人教版八年级上经济和社会生活中国近代民族工业的发展
- YS/T 562-2009贵金属合金化学分析方法铂钌合金中钌量的测定硫脲分光光度法
评论
0/150
提交评论