国际可持续发展研究所-印度的农业光伏-扩大规模的挑战和机遇(英)_第1页
国际可持续发展研究所-印度的农业光伏-扩大规模的挑战和机遇(英)_第2页
国际可持续发展研究所-印度的农业光伏-扩大规模的挑战和机遇(英)_第3页
国际可持续发展研究所-印度的农业光伏-扩大规模的挑战和机遇(英)_第4页
国际可持续发展研究所-印度的农业光伏-扩大规模的挑战和机遇(英)_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Agrivoltaicsin

IndiaChallenges

and

opportunitiesforscale-upIISD

REPORT©2023

InternationalInstituteforSustainableDevelopment

|

IISD.orgMay2023Agrivoltaics

inIndia:

Challengesandopportunitiesforscale-up©2023

InternationalInstituteforSustainableDevelopmentPublishedby

theInternationalInstituteforSustainableDevelopmentThis

publicationislicensedundera

CreativeCommons

Attribution-NonCommercial-ShareAlike

4.0

International

License.International

Institute

forSustainable

DevelopmentTheInternationalInstituteforSustainableDevelopment(IISD)isanaward-winningindependent

think

tank

workingtoacceleratesolutionsforastableclimate,

sustainableresourcemanagement,

andfaireconomies.

Our

workinspiresbetterdecisionsandsparksmeaningfulaction

tohelppeopleand

theplanet

thrive.

We

shinealighton

whatcanbeachieved

whengovernments,

businesses,

non-profits,

andcommunitiescome

together.

IISD’s

staffofmore

than120people,

plusover

150associatesandconsultants,

comefromacross

theglobeandfrommanydisciplines.WithofficesinWinnipeg,

Geneva,

Ottawa,

andToronto,

our

workaffectslivesinnearly100countries.Head

Office111

Lombard

Avenue,

Suite325Winnipeg,

ManitobaCanadaR3B0T4Te

l:+1(204)958-7700Website:

Twitter:

@IISD_newsIISDisaregisteredcharitableorganizationinCanadaandhas501(c)(3)statusin

theUnitedStates.

IISDreceivescoreoperatingsupportfromtheProvinceofManitobaandprojectfundingfromgovernmentsinsideandoutsideCanada,

UnitedNationsagencies,

foundations,

theprivatesector,

andindividuals.Agrivoltaics

inIndia:

Challenges

and

opportunitiesforscale-upMay2023Writtenby

AnasRahman,

AkashSharma,

FlorianPostel,

SiddharthGoel,

KritikaKumar,

and

Tara

LaanIISD.orgiiAgrivoltaics

inIndia:

Challengesandopportunitiesforscale-upAcknowledgementsTheInternationalInstituteforSustainableDevelopmentand

TheConsumerUnity&

TrustSocietyInternational;

wouldlike

to

thankeveryone

whocontributed

to

theformulationof

thisbackgroundpaper.We

wouldlike

to

thankourcolleaguesin

theprojectconsortium

thatsupported

thispublication,

particularlyMiniGovindan,

RashmiMuraliandKritiSharmafrom

TheEnergyandResourcesInstitute;

and

theexpertadvicereceivedfromourpartnersin

thelastphaseof

workonsolarirrigation,

AbhishekJainandShalu

Agrawalfrom

theCouncilonEnergy,Environmentand

Water.

We

wouldalsolike

to

thank

themanygovernmentofficials,

financialinstitutions,

power

distributioncompanies,

and

thematicexperts

whoagreed

toparticipateinin-depthinterviewsandshare

theiradviceandexperiences.Theauthorsof

thispaper

wouldlike

toacknowledgethepioneering

workundertakenby

theNationalSolarEnergyFederationofIndiain

theirreport,

Agrivoltaics

in

India:

Overview

ofOperational

Projects

and

Relevant

Policies

(Pulipaka&Peparthy,

2021),

which

wassupportedbytheIndo-GermanEnergyForumandled

to

the

writingof

thispaper.We

wouldlike

to

thank

thefollowingindividualsandinstitutionsfor

the

valuablecommentsandrecommendations

that

theyprovidedaspeerreviewers:•

Charles

Worringham,

InstituteforEnergyEconomicsandFinancial

Analysis•

DeepakKrishnan,WorldResourcesInstitute•

Shilp

Verma,

InternationalWaterManagementInstitute•

ShobhitSrivastava&RahulKumar,

MinistryofNewandRenewableEnergy•

SunilMysore,

HinrenEngineering•

SuruchiKotoky,

BTGLegal•

Venkata

KalyanRahul

Yedlapally,

Indo-GermanEnergyForum•

VivekSaraf,

SunSeedPower

IndiaThispublicationcouldnothave

beenundertaken

without

thegeneroussupport

of

theIndo-German

development

cooperationproject

that

theDeutscheGesellschaftfürInternationaleZusammenarbeit(GIZ)GmbHimplementsonbehalfof

theFederalMinistry

forEconomicCooperationandDevelopment

(BMZ),

includingsubstantive

inputsandsupport

fromFlorianPostel,

Kritika

Kumar,

andNilanjanGhose,

as

well

asco-fundingfrom

thegovernments

ofDenmark,

Norway,

andSweden.The

opinionsexpressedand

theargumentsemployed

in

thisguidebookdonotnecessarily

reflect

thoseof

thepeerreviewers,

organizations,

andfunders,

norshould

theybeattributed

to

them.IISD.orgiiiAgrivoltaics

inIndia:

Challengesandopportunitiesforscale-upExecutive

SummaryIn

thefuture,

manycountries,

includingIndia,

may

witnessgrowingcompetitionforlandresourcesbetweenagricultureandrenewableenergy.

Agrivoltaics—thesimultaneoususeoflandforbothagricultureandphotovoltaic(PV)power

generation—offersapotentialsolution.Studiesshowpotentialforincreasingcrop

yieldandpanelefficiency,

makingagrivoltaicsanattractiveoptionforfarmers

andsolardevelopers.

Agrivoltaicshasgrownswiftlyacross

theworldinrecent

years,

andIndiais

taking

thefirststepsinitsadoption,

withmore

thanadozenpilotprojectsalreadydeployedacross

thecountry.Thisbackgroundpaperassesses

thecurrentstateofdevelopmentandidentifies

thechallengesandopportunitiesfor

thecommercializationofagrivoltaicsinIndia.

We

reviewedexistingliteratureonagrivoltaicsandinterviewed11expertsfrompower

distributioncompanies,researchinstitutions,

andcommercialfirms

whohaveimplementedpilotprojects.Thesepilots

werelimited

to

theco-locationofhorticulturecropsandgrid-connectedsolarPV,andhence

thisis

thefocusofourinterviews(notco-location

withlivestockorotheragriproducts).Thisbackgroundpaperissupplementary

toacomprehensiveguidebookonPM-KUSUM1Components

A&C

thatisbeingpublishedseparately.We

identifyseven

keyfindingsforIndia:1.

Agrivoltaics

did

not

negatively

impact—and

in

some

cases

even

increased—crop

yields,

according

to

implementers.

ButpilotsinIndiahaveonly

testedagrivoltaics

withalimited

varietyofcropsandagriculturalsettings.

Better-designedpilots

withrigorous

testingmethodsarerequired

tobuildastrongknowledgebase.Theexperienceofpilotimplementerssuggests

the

technicalfeasibilityofagrivoltaicswithnochange(orevenanincrease)in

the

yieldofsomecropslikeleafy

vegetables,millet,

andmedicinalplantsundershadingconditions.

However,

better-designedpilotswithrichdatacollectionon

thecropmicroenvironmentarerequiredbefore

theseresultscanbegeneralized.

Moreover,

thecropchoices

trialledin

thepilotprojectsarestilllimited,

andmainstreamcropslikepaddyand

wheathaveyettobe

triedsuccessfully.

Established

valuechainsandpricesupportmechanismsfor

thesecropsmakeitchallenging

toencouragefarmers

toshift

tocrops

thataremostsuitableforagrivoltaics.2.

The

key

to

the

commercialization

of

agrivoltaics

lies

in

increasing

itsattractiveness

through

technological

innovations

and

testing

business

modelsmost

viable

in

the

Indian

context.

Agrivoltaics

pilotsinIndiahave

focusedontechnicalanalysis,

includingcropsuitability,

crop

yields,

andcostcompetitiveness.Statescanencourage

the

testingofnewbusiness

modelsandnew

technologies.Weidentified

threepotentialbusiness

modelsandconditionsfordeployingagrivoltaics:i)agrivoltaics

jointlyowned

byfarmer

anddeveloper,

ii)agrivoltaics

solelyowned

byeither

thefarmer

or

thedeveloper,

andiii)developer

as

theprimary

promoterand1

PM-KUSUMreferstothe“PradhanMantriKisanUrjaSurakshaevamUtthaanMahabhiyanYojana”program,aflagshipsolarirrigationschemelaunchedin2019bytheGovernmentofIndiatosupportthedeploymentofsolarpumpstofarmersandtheinstallationofdecentralizedsolarplantstosolarizeruralandagriculturalfeeders.IISD.orgivAgrivoltaics

inIndia:

Challengesandopportunitiesforscale-upfarmer

asa

partner.Their

commercial

viabilityneeds

tobe

testedbefore

widespreadapplication.Technological

innovations

likebifacial

panelsandsun

trackinghaveshown

somepromisingresultsinagrivoltaics

andcanbeencouraged

throughstate-sponsoredpilots.3.

Arid

and

semi-arid

regions,

as

well

as

peri-urban

areas,

are

likely

to

befavourable

locations

for

agrivoltaics

in

India.

ThepilotprojectsinIndiaandabroadindicate

thatarid

andsemi-arid

regions

mayprovide

conditions

thatenablemaximumsynergybetweenagriculture

andenergygeneration.

A

coupleofstudiesshowthat

thelower

temperatureandhumidmicroclimatebelowthepanelenabledby

theshadingcouldstimulatecropgrowth.

However,

thereisa

shortage

ofresearchandpilotsinarid

andsemi-arid

climates,

and

thisimpedes

thegrowth

ofagrivoltaics.Indiacan

take

theleadonestablishing

thenecessary

evidencebase.

Intervieweesindicated

thatit

would

alsobevaluabletoexplore

theagrivoltaics

atperi-urbansitesclose

tocitiesandtownswithproximitytomarketsforhigh-value

horticulturalproducts.

Access

to

technicalandfinancialresourcesmakes

theseareasidealfor

thenextsetofpilots.4.

State

governments

need

to

reform

land-use

and

tax

regulations

to

supportagrivoltaics,

aswell

as

develop

consistent

standards

and

definitions

foragrivoltaics.

Land-useand

taxlawscurrentlydistinguishbetweenagriculturalandnon-agriculturalactivities

withassociatedrestrictionson

theiruseand

taxbenefits.Existinglawsneed

tobeamended

torecognizeandencouragebusinesses

thatmayconductbothactivitiesconcurrently.

Cleardefinitionsandstandardsforagrivoltaicsareneeded

toensureprojectdevelopers,

governments,

andlendinginstitutionshaveasharedunderstandingof

thecriteria

thatdefinesuchprojects.Thisisparticularlyimportant

todetermine

theeligibilityforany

subsidiesorconcessionalfinancingin

thefuture.

However,

thereshouldbeadequatesafeguardsandenforcementmechanisms

topreventdevelopersfrommisusing

theprovisiontocircumventland-uselaws.5.

States

need

to

think

beyond

the

uniform

ceiling

tariff

regime

if

agrivoltaicsis

going

to

be

commercialized

at

scale.

Marketmechanismscanbeexploredforsupportingagrivoltaics

throughinnovativetariffstructures.

Asingleceiling

tariffacrossastatenegates

thelocationaladvantageofagrivoltaicsinareas

withhighlandrent.

Statesshouldconsideralternative

tariff-settingapproaches,

includingsubstationorzone-specific

tariffs,

orsupport

theopen-accessroute(through

whichdeveloperscansell

thepower

directly

toelectricityconsumersatamutuallydecidedrate)forpromotingagrivoltaics.6.

Capacity

building

would

be

critical

in

scaling

up

agrivoltaics.

Scientificdesignofanagrivoltaicssystem

toensureoptimalsunlightdistributionisaskill-intensiveprocess.

Similarly,

cropmanagementundershadingconditionsrequiresadvancedskillsamongfarmers.

Co-managementofresourcescanintroducemanagerialchallenges.Stateshavearoleinensuringfarmers

anddevelopershaveaccess

toinformationthrough

training,

professionalnetworksandcentresofexcellence.7.

Continuous

innovation

and

peer

learning

are

critical

to

overcomingoperational

challenges.

On

theagricultureside,

farmers’

safetyconcernsduetoproximitytohigh-voltagecabling,

as

wellasconstraintson

themobilityoffarmIISD.orgvAgrivoltaics

inIndia:

Challengesandopportunitiesforscale-upequipment,

are

themainchallenges.Themajorconcernsforpower

productionincluded

theincreasedmaintenancecostdue

toelevatedstructures,

structuraldecaydue

to

thehumidmicroenvironment,

andchallengesincoordinating

watermanagement

withfarmers.There

aresomepromisingsolutions,

like

theintegrationofrainwaterharvestingstructures

withagrivoltaics.

However,

scalingup

thesesolutionsrequiresfurtherresearchandpeerlearning.Thestudyfindspromisingresultsinpilotprojectsandidentifieskeyareasofopportunityforagrivoltaics,

justifyingfutureresearchandinvestment.

Stateandcentralgovernmentscansupportfurtherpilotsandfacilitateinnovationsbyforgingpartnerships

withkeystakeholders,co-creatinglegaland

technicalframeworks,

andcreatingappropriateincentives.

Lessonsfromthisresearchcouldalsobeapplicable

to

the

testingandcommercializationofotheragrivoltaicsmodelsinIndia,

suchassolarpanelsinassociation

withbroadscalecropsorlivestock.IISD.orgviAgrivoltaics

inIndia:

Challengesandopportunitiesforscale-upTable

of

Contents1.0

Introduction12.0

Context:The

what,why,

and

where

of

agrivoltaics23.0

Understanding

Agrivoltaics53.1Potential

BenefitsandRisksof

Agrivoltaics

73.2

Costs

94.0

Agrivoltaics

Projects

inIndia105.0

Insights

From

Stakeholder

Consultations146.0

Future

Prospects

26References

27Appendix.

Listof

Stakeholder

Consultations

31IISD.orgviiAgrivoltaics

inIndia:

Challengesandopportunitiesforscale-upList

of

FiguresFigure1.Illustrationof

atypical

agrivoltaics

system2Figure2.Agrivoltaics

asafood–energy

nexus

approachto

resource

use3Figure3.Majordevelopments

inagrivoltaics

insomefirst-mover

countries

4Figure4.

Classificationof

agrivoltaics

systems

6List

of

TablesTable

1.Potential

benefitsandrisksof

agrivoltaics

8Table

2.Listof

pilotprojectson

agrivoltaics

inIndia

11Table

3.Businessmodelsof

agrivoltaics

16List

of

BoxesBox

1.Safeguardingagainstgreenwashingandmisuseof

ModelIII19Box

2.France’s

definitionof

agrivoltaics21IISD.org

viiiAgrivoltaics

inIndia:

Challengesandopportunitiesforscale-upAbbreviationsADEMEFrench

AgencyforEcologicalTransition(Agencedel'environnementetdelamaîtrisedel'énergie)CAZRIDINCentral

AridZoneResearchInstituteGermanInstituteforStandardization(DeutschesInstitutfürNormung)distributioncompanyDISCOMENEAItalianNational

AgencyforNew

Technologies,

EnergyandSustainableEconomicDevelopment(Agenzianazionaleperlenuovetecnologie,

l'energiaelosviluppoeconomicosostenibile)LERPVlandequivalentratiophotovoltaicIISD.orgixAgrivoltaics

inIndia:

Challengesandopportunitiesforscale-up1

.0

IntroductionIn

thefuture,

manycountries,

includingIndia,

may

witnessgrowingcompetitionforlandresourcesbetweenagricultureandrenewableenergy.

Agrivoltaics—thesimultaneoususeoflandforbothagricultureandphotovoltaic(PV)power

generation—offersapotentialsolution.Studiesshowpotentialforincreasingcrop

yieldandpanelefficiency,

makingagrivoltaicsanattractiveoptionforfarmers

andsolardevelopers.

Agrivoltaicshasgrownswiftlyacross

theworldinrecent

years,

andIndiais

taking

thefirststepsinitsadoption,

withmore

thanadozenpilotprojectshavingbeendeployedacross

thecountry.Thispaperreports

theexperiences

ofstakeholders

(power

distribution

companies[DISCOMs],agricultural

universities,

private

solarPVdevelopers,

andfarmers)

whohave

implementedagrivoltaics

pilotsacrossIndia.The

objective

is

tobring

togetherevidencefromresearchstudiesandlearnings

frompilotprojects

throughinterviews

withrelevantstakeholders

tosummarize

thecurrent

status,

implementationchallenges,

andopportunities

forcommercializationandscale-upofagrivoltaics.The

paperaims

toinform

futurepolicy

actionsandstudiesbybringing

outkeyguidingobservations

andaddressingkeyresearchquestions.Thefindingsin

thispaperaredesigned

tosupportstateagencies,

developers,

andotherstakeholdersin

thefasteradoptionofagrivoltaicsbyprovidingpolicyrecommendations,proposingbusinessmodels,

as

wellasfinancialand

technical

transitionmechanisms.Thispaperisasupplementarycompanion

toacomprehensive

guidebook

(referred

tothroughout

thisdocumentas

the

“guidebook”)onhowtodeploysmall-scaledecentralizedsolarpower

plantsunderIndia’sPradhanMantriKisanUrjaSurakshaevamUtthanMahabhiyan(PM-KUSUM)scheme.The

guidebookprovidespracticalguidance

tostatesonhowtheycanbegin

topilotagrivoltaicsin

theirfirstphasesofdeploymentunderPM-KUSUM,

whichexplicitlystates

thatitcanbeused

tosupportagrivoltaics.IISD.org1Agrivoltaics

inIndia:

Challengesandopportunitiesforscale-up2

.0

Context:

The

what,

w

hy,

and

where

ofagrivoltaicsFood

securityand

therapidrolloutoflarge-scalerenewableenergyproductionarecriticalforsustainabledevelopment.

Butbothrequiresignificantareasoflandand,

withoutadequateplanning,

maycompeteforfinitelandresources(Nonhebel,

2005).

In

thecoming

years,increasedfooddemanddue

toIndia’srisingpopulationandimprovinglivingstandardsmayputpressureonagriculturallandresources(Kumar&Sharma,

2020).

According

toestimatesby

Worringham(2021),

theamountofsolarandonshore

windpower

required

toreachnet-zeroinIndiaby2050

wouldrequirebetween55,500and77,000km2ofland(Worringham,2021).

Inaddition,

in

the

veryshort

term,

governmentshaveaccelerated

thepushforlocalizingbothfoodandenergyproductionfollowingRussia’sinvasionofUkraineand

thesubsequentfoodandenergycrises.This

underscores

theimportanceofearlyplanningbypolicy-makerson

thelinksbetweenfood,

energy,

andland.Agrivoltaicsisoneof

thesolutionsproposed

toaddress

thispotentialconflict.

Agrivoltaicsrefers

to

thesimultaneoususeoflandforagricultureandphotovoltaicpower

generation.AsillustratedinFigure1,

thisisachievedbydesigningasolarpower

plant

toenablefarmingbetweenorbelowthepanelsonland

that

wouldotherwiseremainunused.

Figure2demonstrates

thecentralpremiseofagrivoltaics:

toimproveland-useefficiencyandsustainablyenhanceenergyandfoodsecurity.Figure

1.Illustrationof

atypical

agrivoltaics

systemTraditional

farmingAgrivoltaicsGround-mountedsolarplantSource:Authors’diagram.Severalcountries,

especiallyindustrializednations,

haveachievedasignificantscaleinagrivoltaics

throughnationalsupportprograms.The

globallyinstalledagrivoltaicscapacitystoodat2.8GWin2020,

upfromamere5MWin2014(Trommsdorff,

Gruberetal.,

2022).Chinaleadsininstalledcapacity,

with1.9GWdeployedasof2020(Trommsdorff,

Gruberetal.,

2022).

Figure3summarizes

thegrowthofagrivoltaicsin

thesecountries.IISD.org2Agrivoltaics

inIndia:

Challengesandopportunitiesforscale-upFigure

2.Agrivoltaics

asafood–energy

nexus

approachto

resource

useClimatechangeReduces

agriculturalproductivityEnergy

mustbedecarbonizedto

mitigate;solarisakey

technologyIncreasingpopulationandimprovinglivingstandardsIncreaseinfood

demandIncreaseinenergy

demandUncertaintiesinglobaltradeNationalself-sufficiency

infood

productionNationalself-sufficiency

inenergy

productionIncreasedcropped

areaIncreaseinlandrequirementforsolarprojectsAgrivoltaicsSource:Authors’diagram.Agrivoltaicsisstillanascentpractice

withevolvingtechnology,

designs,

andstandards.

InIndia,

agrivoltaicsisstilllimited

toahandfulofpilotsandhasnot

yetreachedacommercialscale.

However,

existingschemescouldfacilitate

the

widespreadadoptionof

thepractice.ThePM-KUSUMschemepromotes

the

“solarization”

ofagriculture.

Amongotherstrategies,theschemepromotes

thesettingupofsmall-scaledecentralizedgrid-connectedsolarpowerplantsonfarmers’

land.

Although

theschemeprimarily

targetsbarrenanduncultivableland,settingupplantsonagriculturallandisalsoallowed

with

thecondition

that

thesolarpanelsareinstalledonraisedstiltsandadequatespacingbetweenpanels,

allowingcultivationtocontinue.This

provisionenables

theadoptionofagrivoltaicsunder

thescheme.IISD.org3Agrivoltaics

inIndia:

Challengesandopportunitiesforscale-upFigure

3.Major

developments

inagrivoltaics

insome

first-mover

countries2•

Installedcapacity

of

agrivoltaics:1,900

MW(asof

2020).

PromotionthroughChina1JapanPV

poverty

alleviationandpower

generationfront-runnerbaseschemes.•

BaofengGroupisdeveloping

a1

GW

agrivoltaic

projectinNingxiaprovince.•

Installedcapacity

of

agrivoltaics:500-600MW.2•

Promotionthroughfeed-intariff

schemewithpreferential

treatmenttoagrivoltaics.•

New

Energy

andIndustrial

Technology

DevelopmentOrganizationpublishednew

guidelines.3•

Installedcapacity

of

agrivoltaics:15MW.•

GermanregulatorBnetzAinvited

bidsforallocating403

MWagrivoltaicscapacity

in2022.4Germany•

FraunhoferInstituteforSolarEnergy

Systems

publishednew

guidelinesonagrivoltaics.•

Italy

isinvesting

EUR1.1billionforthedevelopment

of

2

GW

inagrivoltaicscapacity.5•

The

ItalianNationalAgency

for

New

Technologies,

Energy

andSustainableEconomicDevelopment

(Agenzianazionaleperlenuove

tecnologie,

l’energiaelosviluppoeconomicosostenibil)launcheda“NationalNetwork

forSustainableAgrivoltaics”

to

develop

a

regulatory

framework

for

agrivoltaicsinthecountry.Italy•

France

Agrivoltaisme,

world'sfirsttradeassociationof

agrivoltaics,wasformedin2021.•

The

French

Agency

for

Ecological

Transition

(Agence

de

l’environnement

et

dela

maîtrise

de

l’énergie,

orADEME)defined

standard

for

agrivoltaics

in2022.France•

Implementedseveral

tenderrounds,withmore

than100

MWcapacityalready

allocated.6Sources:1.ADEMEetal.,2021;

Bellini,2021;

ItalianNationalAgency

for

New

Technologies,

Energy

andSustainableEconomicDevelopment,

2021;

EnerData,2022;Khattar,

2020;

Matalucci,2021;

Tajima

&Iida,2021;

Trommsdorff

etal.,2021

2022;

Vorast,

2022.2

Thestandardsforagrivoltaicsinstallationsisnotuniformacrossthesecountries.Hence,wehaveusedtherespectivecountrydefinitionsforagrivoltaics.IISD.org4Agrivoltaics

inIndia:

Challengesandopportunitiesforscale-up3

.0

Understanding

AgrivoltaicsBeyondthebroaddefinitionof

“simultaneoususeoflandforagricultureandsolarPVpowergeneration,”

therearenostandardsanddefinitionsforagrivoltaicsinIndia.

CountrieslikeGermany,

France,

andJapanpioneered

theadoptionofagrivoltaicsandareconstantlyevolvingandupdating

theirstandardsanddefinitions.DeutschesInstitutfürNormung(GermanInstituteforStandardization,

orDIN),

aprominentindependentassociationforstandardizationinGermany,

uses

thefollowingdefinition:“Agriculturalphotovoltaics(agrivoltaics)is

thecombineduseofoneand

thesameareaoflandforagriculturalproductionas

theprimary

use,

andforelectricityproductionbymeansofaPVsystemasasecondaryuse”

(DIN,

2021).Similarly,

France’sdefinitionofagrivoltaicsmandates

that

thePVsysteminagrivoltaicsshouldnotcause

“asignificantqualitativeandquantitativedegradationof

theagriculturalyield,

as

wellasareductionof

therevenuegeneratedfrom

theagriculturalactivity”

whilebringingbeneficialservices

toagricultureproduction(Bellini,

2022).Japandifferentiatesagrivoltaicsfromothersolarpower

plantsas

thosesolarpower

plantswhereoptimalcropproductionis

thecentraldesigncriteria(Bellini,

2021).Thus,

theprimacyofagriculturalactivitiesisacornerstoneforagrivoltaicsin

thesecountries.Themainchallengefordevelopingastandardis

that

thereisnooneall-encompassingagrivoltaicsmodel.There

isa

widerangeofdesignsandconfigurationspilotedanddemonstratedindifferentcountries.

Adiversityofparameterslikepanelheight,

orientation,andspacingcanbe

tinkered

with

tooptimizeforspecificrequirements.Theagriculturalandpower

output

will

vary

with

thesedesignfactors,

makingitchallenging

toproposeuniformstandardsanddefinitionsforallmodels.Trommsdorff,

Gruber,

etal.

(2022)classifiedagrivoltaicsbasedonagriculturalproductionactivitiesandPVsystemstructureanddesign,

assummarizedinFigure4.

Thisindicateshowagrivoltaicscanbeintegrated

withclosedfarmingsystemslikegreenhousesandconventionalopenfarmingsystems.PilotprojectsinIndia(see

Table

2)—allof

themopenfarmingsystems

withcropcultivation—aremainlydifferentiatedby

theirstructure.There

aretwotypes:1.

Overhead

PV:

PVpanelsaremountedonanelevatedstructure,

and

theareabeneathisusedforcropping.The

panels’

heightisbasedoncropchoices,

ground-levellightrequirements,

andoperationalrequirementslikemovingagriculturalequipment.Aquaculture,

likeshrimpfarming,

isalsopossibleunderneath

thepanels

whenitissetupover

small

waterbodies.

Livestockgrazingrequireslargeamountsofland,

andoverheadPVinlargeareasisprohibitivelyexpensive.2.

Interspace

PV:ThePVpanelisground-mountedorclose

to

theground,

and

thegapsbetweenadjoiningrowsofpanelsareprimarilyusedforcultivation.

Live

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论