版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省昆明市呈贡第三中学2022-2023学年高一数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知集合M={x|x<3},N={x|},则M∩N=(
)
B.{x|0<x<3}
C.{x|1<x<3}
D.{x|2<x<3}参考答案:C略2.如果函数在区间上单调递增,那么实数的取值范围是(
)A、
B、
C、
D、参考答案:A3.在△ABC中角A、B、C的对边分别是a、b、c,若,则为(
)A. B. C. D.参考答案:C试题分析:,则有,则有,即,即,则有,即,因为,所以,故有,解得,因为,所以,故选C.考点:1.正弦定理;2.边角互化
4.在三角形ABC中,已知A=60°,b=1,其面积为,则为()A. B. C. D.参考答案:D【考点】HP:正弦定理.【分析】由题意和三角形的面积公式列出方程求出c,由条件和余弦定理求出a,由正弦定理求出的值.【解答】解:∵A=60°,b=1,其面积为,∴,解得c=4,由余弦定理得,a2=b2+c2﹣2bccosA=1+16﹣2×=13,则a=,由正弦定理得,==,故选D.5.在中,若,,则的形状为…(
▲
)A.等腰三角形
B.直角三角形
C.等腰直角三角形
D.等腰或直角三角形参考答案:C略6.下列四个图形中,不是以x为自变量的函数的图象是()A. B. C. D.参考答案:C【考点】函数的概念及其构成要素.【分析】根据函数的定义中“定义域内的每一个x都有唯一函数值与之对应”判断.【解答】解:由函数定义知,定义域内的每一个x都有唯一函数值与之对应,A、B、D选项中的图象都符合;C项中对于大于零的x而言,有两个不同的值与之对应,不符合函数定义.故选C.7.已知△ABC中,AB=6,∠A=30°,∠B=120°,则△ABC的面积为(
)A.9
B.18
C.9
D.18参考答案:C略8.对于,下列结论正确的是
A.
B.
C.
D.参考答案:B略9.如果集合,同时满足,就称有序集对为“好集对”。这里有序集对意指,当时,和是不同的集对,那么“好集对”一共有(
)个。
A.5
B.6
C.7
D.8参考答案:B10.设是定义在R上的奇函数,当≤0时,,则(
)
A.-3
B.-1
C.1
D.3参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.函数f(x)=a1﹣x+5(a>0且a≠1)的图象必过定点.参考答案:(1,6)【考点】指数函数的图象变换.【分析】由a得指数为0求得x值,再求出相应的y值得答案.【解答】解:由1﹣x=0,得x=1.此时f(x)=6.∴函数f(x)=a1﹣x+5(a>0且a≠1)的图象必过定点(1,6).故答案为:(1,6).12.已知全集A={70,1946,1997,2003},B={1,10,70,2016},则A∩B=
.参考答案:{70}【考点】交集及其运算.【分析】由A与B,求出两集合的交集即可.【解答】解:∵A={70,1946,1997,2003},B={1,10,70,2016},∴A∩B={70}.故答案为:{70}13.已知,都是锐角,sin=,cos=,则cos(+)=
。参考答案:略14.函数的最小周期是
.参考答案:略15.函数y=的单调增区间为
参考答案:16.函数是偶函数,若h(2x﹣1)≤h(b),则x的取值范围是
.参考答案:【考点】奇偶性与单调性的综合.【分析】由h(x)为偶函数求出b值,由偶函数性质得h(|2x﹣1|)≤h(|b|),再利用h(x)在(0,+∞)上的单调性可得|2x﹣1|与|b|的大小关系,从而可解x的范围.【解答】解:当x>0时,﹣x<0,因为h(x)是偶函数,所以h(﹣x)=h(x),即(﹣x)2﹣b(﹣x)=x2+x,得b=1.h(2x﹣1)≤h(b),即h(2x﹣1)≤h(1),又h(x)为偶函数,所以h(|2x﹣1|)≤h(1),当x>0时,h(x)=x2+x=(﹣,在(0,+∞)上单调递增,所以0<|2x﹣1|≤1,解得0≤x<或<x≤1,故答案为:[0,)∪(,1].17.已知.(1)求的值;(2)若求的值.参考答案:(1)(2)解析:解:(1)
5分(2)
6分
7分
8分
12分
略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.A、B是单位圆O上的点,点A是单位圆与x轴正半轴的交点,点B在第二象限,记∠AOB=θ且sinθ=.(1)求B点坐标;(2)求的值.参考答案:【考点】同角三角函数基本关系的运用;任意角的三角函数的定义.【专题】计算题;转化思想;综合法;三角函数的求值.【分析】(1)分别求出sinθ和cosθ的值,从而求出B点的坐标;(2)根据三角函数的公式代入求出即可.【解答】解:(1)点A是单位圆与x轴正半轴的交点,点B在第二象限设B(x,y),则y=sinθ=,x=cosθ=﹣=﹣,∴B点的坐标为(﹣,);(2)===﹣.【点评】本题考查了三角函数的定义及其基本关系,熟练掌握三角函数的公式是解题的关键.19.(12分)设,是两个相互垂直的单位向量,且,.(1)若,求的值;
(2)若,求的值.参考答案:解法一:(1)由,且,故存在唯一的实数,使得,即
(2),,即,,
解法二:∵,是两个相互垂直的单位向量,
∴、,
⑴∵,∴,解得;
⑵,,即,解得。略20.已知是同一平面内的三个向量,其中.(1)若,且,求的坐标;(2)若,且与的夹角为π,求的值.参考答案:(1)或(2)0【分析】(1)由可设,再由可得答案。(2)由数量积的定义可得,代入即可得答案。【详解】解:(1)由可设,∵,∴,∴,∴或(2)∵与夹角为,∴,∴.【点睛】本题考查向量的基本运算,属于简单题。21.(本题满分8分)
已知。
(I)设,求函数的单调递增区间;
(II)若一动直线与函数的图象分别交于M,N两点,求的最大值。参考答案:解:(1)。(1分)
,(2分)
单调递增区间为(4分)
(2)(5分)
,(7分)
∴的最大值为2。(8分)22.在平面直角坐标系xOy中,曲线y=x2﹣6x+1与坐标轴的交点都在圆C上.(Ⅰ)求圆C的方程;(Ⅱ)若圆C与直线x﹣y+a=0交与A,B两点,且OA⊥OB,求a的值.参考答案:【考点】圆的标准方程;直线与圆相交的性质.【专题】直线与圆.【分析】(Ⅰ)法一:写出曲线与坐标轴的交点坐标,利用圆心的几何特征设出圆心坐标,构造关于圆心坐标的方程,通过解方程确定出圆心坐标,进而算出半径,写出圆的方程;法二:可设出圆的一般式方程,利用曲线与方程的对应关系,根据同一性直接求出参数,(Ⅱ)利用设而不求思想设出圆C与直线x﹣y+a=0的交点A,B坐标,通过OA⊥OB建立坐标之间的关系,结合韦达定理寻找关于a的方程,通过解方程确定出a的值.【解答】解:(Ⅰ)法一:曲线y=x2﹣6x+1与y轴的交点为(0,1),与x轴的交点为(3+2,0),(3﹣2,0).可知圆心在直线x=3上,故可设该圆的圆心C为(3,t),则有32+(t﹣1)2=(2)2+t2,解得t=1,故圆C的半径为,所以圆C的方程为(x﹣3)2+(y﹣1)2=9.法二:圆x2+y2+Dx+Ey+F=0x=0,y=1有1+E+F=0y=0,x2﹣6x+1=0与x2+Dx+F=0是同一方程,故有D=﹣6,F=1,E=﹣2,即圆方程为x2+y2﹣6x﹣2y+1=0(Ⅱ)设A(x1,y1),B(x2,y2),其坐标满足方程组,消去y,得到方程2x2+(2a﹣8)x+a2﹣2a+1=0,由已知可得判别式△=56﹣16a﹣4a2>0.在此条件下利用根与系数的关系得到x1+x2=4﹣a,x1x2=①,由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025湖南建筑安全员-C证考试(专职安全员)题库附答案
- 贵州大学《钢琴合奏》2023-2024学年第一学期期末试卷
- 贵州财经大学《社会经济调查与写作》2023-2024学年第一学期期末试卷
- 2025吉林建筑安全员-C证考试(专职安全员)题库附答案
- 贵阳信息科技学院《韩国语听力》2023-2024学年第一学期期末试卷
- 硅湖职业技术学院《房屋建筑学A》2023-2024学年第一学期期末试卷
- 2025山东省建筑安全员《C证》考试题库及答案
- 广州幼儿师范高等专科学校《级管理与主任工作实务》2023-2024学年第一学期期末试卷
- 2025江西建筑安全员《C证》考试题库及答案
- 广州卫生职业技术学院《生态环境与人类发展》2023-2024学年第一学期期末试卷
- 2025年国务院发展研究中心信息中心招聘应届毕业生1人高频重点提升(共500题)附带答案详解
- 2024年公安机关理论考试题库500道及参考答案
- 特殊情况施工的技术措施
- 大学物理(二)知到智慧树章节测试课后答案2024年秋湖南大学
- 银行运营集中规划
- 2024年托管装修责任协议
- 国家自然科学基金申请书模板三篇
- (医学课件)护理人文关怀
- 数据采集服务委托合同
- DB11T 1833-2021 建筑工程施工安全操作规程
- 信息检索课件 第2章 文献检索方法(1)-2
评论
0/150
提交评论