版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省滁州市龙集中学2022-2023学年高二数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.命题“?x∈R,2x>0”的否定是()A.?x0∈R,2>0 B.?x0∈R,2≤0C.?x∈R,2x<0 D.?x∈R,2x≤0参考答案:B【考点】命题的否定.【分析】直接利用全称命题的否定是特称命题写出结果即可.【解答】解:因为全称命题的否定是特称命题,所以命题“?x∈R,2x>0”的否定是?x0∈R,2≤0.故选:B【点评】本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.2.取一根长度为4m的绳子,拉直后在任意位置剪断,则剪得的两段长度都不小于1.5m的概率是()A. B. C. D.参考答案:A【考点】几何概型.【分析】根据题意确定为几何概型中的长度类型,找出中间1m处的两个界点,再求出其比值.【解答】解:记“两段的长都不小于1.5m”为事件A,则只能在中间1m的绳子上剪断,剪得两段的长都不小于1.5,所以事件A发生的概率P(A)=.故选:A.3.已知函数,或,且,则A.
B.C.
D.与的大小不能确定参考答案:C4.由直线y=x+l上的点向圆引切线,则切线长的最小值为
(A)
(B)
(C)
(D);参考答案:A5.已知复数z1=cosα+isinα和复数z2=cosβ+isinβ,则复数z1·z2的实部是()A.sin(α-β) B.sin(α+β)C.cos(α-β) D.cos(α+β)参考答案:D略6.数列的一个通项公式是()参考答案:7.抛物线x2=4y的焦点坐标为()A.(1,0) B.(﹣1,0) C.(0,1) D.(0,﹣1)参考答案:C【考点】抛物线的简单性质.【分析】先根据标准方程求出p值,判断抛物线x2=4y的开口方向及焦点所在的坐标轴,从而写出焦点坐标.【解答】解:∵抛物线x2=4y中,p=2,=1,焦点在y轴上,开口向上,∴焦点坐标为(0,1),故选C.8.程序框图如图21-1所示,则该程序运行后输出的B等于()图21-1A.7
B.15C.31
D.63参考答案:D无9.已知锐角△ABC的面积为,BC=4,CA=3,则角C的大小为()A.75° B.60° C.45° D.30°参考答案:B【考点】解三角形.【专题】计算题.【分析】先利用三角形面积公式表示出三角形面积,根据面积为3和两边求得sinC的值,进而求得C.【解答】解:S=BC?AC?sinC=×4×3×sinC=3∴sinC=∵三角形为锐角三角形∴C=60°故选B【点评】本题主要考查了解三角形的实际应用.利用三角形的两边和夹角求三角形面积的问题,是三角形问题中常用的思路.10.如图所示,程序框图(算法流程图)的输出结果是()A.34 B.55 C.78 D.89参考答案:B【考点】程序框图;程序框图的三种基本逻辑结构的应用.【专题】算法和程序框图.【分析】写出前几次循环的结果,不满足判断框中的条件,退出循环,输出z的值.【解答】解:第一次循环得z=2,x=1,y=2;第二次循环得z=3,x=2,y=3;第三次循环得z=5,x=3,y=5;第四次循环得z=8,x=5,y=8;第五次循环得z=13,x=8,y=13;第六次循环得z=21,x=13,y=21;第七次循环得z=34,x=21,y=34;第八次循环得z=55,x=34,y=55;退出循环,输出55,故选B【点评】本题考查程序框图中的循环结构,常用的方法是写出前几次循环的结果找规律,属于一道基础题.二、填空题:本大题共7小题,每小题4分,共28分11.在正三棱柱ABC﹣A1B1C1,若AB=2,AA1=1,则A到平面A1BC的距离.参考答案:【考点】点、线、面间的距离计算.【分析】要求点A到平面A1BC的距离,可以求三棱锥底面A1BC上的高,由三棱锥的体积相等,容易求得高,即是点到平面的距离.【解答】解:设点A到平面A1BC的距离为h,则三棱锥的体积为即
∴∴h=.故答案为:.12.计算:,,,……,.以上运用的是什么形式的推理?____.参考答案:归纳推理13.若(为虚数单位)是关于的方程的一个根,则的值为
.参考答案:1314.以下四个关于圆锥曲线的命题中:①设A、B为两个定点,k为非零常数,若||PA|﹣|PB||=k,则动点P的轨迹为双曲线;②过定圆C上一定点A作圆的动弦AB,O为坐标原点,若,则动点P的轨迹为椭圆;③抛物线的焦点坐标是;④曲线与曲线(<35且≠10)有相同的焦点.其中真命题的序号为___________。参考答案:③④略15.直线:
绕着它与x轴的交点逆时针旋转所得直线的方程为
.参考答案:16.正三棱锥外接球的球心为,半径为,且.则
.参考答案:17.某研究机构准备举办一次数学新课程研讨会,共邀请50名一线教师参加,使用不同版本教材的教师人数如下表所示(1)从这50名教师中随机选出2名,问这2人使用相同版本教材的概率是___________参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知椭圆C:的短轴长为2,离心率e=,(1)求椭圆C的标准方程:(2)若F1、F2分别是椭圆C的左、右焦点,过F2的直线l与椭圆C交于不同的两点A、B,求△F1AB的面积的最大值.参考答案:【考点】K4:椭圆的简单性质.【分析】(1)由题意可知:2b=2,b=,椭圆的离心率e==,则a=2c,代入a2=b2+c2,求得a,即可求得椭圆C的标准方程;(2)设直线l的方程为x=my+1,代入椭圆方程,则,令,则t≥1,由函数的单调性,即可求得△F1AB的面积的最大值.【解答】解:(1)由题意可得,…解得:,…故椭圆的标准方程为;…(2)设A(x1,y1),B(x2,y2),…由题意知,直线l的斜率不为零,可设直线l的方程为x=my+1,由,整理得:(3m2+4)y2+6my﹣9=0,由韦达定理可知:,…又因直线l与椭圆C交于不同的两点,故△>0,即(6m)2+36(3m2+4)>0,m∈R.则,…令,则t≥1,则,令,由函数的性质可知,函数f(t)在上是单调递增函数,即当t≥1时,f(t)在[1,+∞)上单调递增,因此有,所以,即当t=1,即m=0时,最大,最大值为3.…19.△ABC的三个内角A、B、C所对的边分别为a、b、c,asinAsinB+bcos2A=a.(Ⅰ)求;(Ⅱ)若c2=b2+a2,求B.参考答案:【考点】解三角形.【分析】(Ⅰ)先由正弦定理把题设等式中边转化成角的正弦,化简整理求得sinB和sinA的关系式,进而求得a和b的关系.(Ⅱ)把题设等式代入余弦定理中求得cosB的表达式,把(Ⅰ)中a和b的关系代入求得cosB的值,进而求得B.【解答】解:(Ⅰ)由正弦定理得,sin2AsinB+sinBcos2A=sinA,即sinB(sin2A+cos2A)=sinA∴sinB=sinA,=(Ⅱ)由余弦定理和C2=b2+a2,得cosB=由(Ⅰ)知b2=2a2,故c2=(2+)a2,可得cos2B=,又cosB>0,故cosB=所以B=45°20.(1)已知A=6C,求n的值;(2)求二项式(1﹣2x)4的展开式中第4项的系数.参考答案:【考点】DB:二项式系数的性质.【分析】(1)根据排列公式计算即可;(2)由二项式的通项得到展开式的第四项为T4=C43(﹣2x)3=﹣32x3,问题得以解决.【解答】解:(1)由A=6C可得n(n﹣1)(n﹣2)=6×,即n﹣2=3,解得n=5;(2)由二项式的通项得到展开式的第四项为T4=C43(﹣2x)3=﹣32x3,二项式(1﹣2x)4的展开式中第4项的系数为﹣32.21.(12分)根据如图的程序框图完成(1)若①处为“i>4?”,②处“输出s”,输入a=1时,求程序框图输出结果是多少?(2)若要使S>10000·a,(输入a的值范围0<a≤9),求循环体被执行次数的最小值,请设计①和②处分别填什么?(只填结果)参考答案:(1)S=1+11+111+1111=1234
………6分(2)①处填
………9分②处填输出
………12分22.(10分)在△ABC中,内角A,B,C的对边分别为a,b,c且a>c,已知△ABC的面积S=,cosB=,b=3.(1)求a和c的值;(2)求cos(B﹣C)的值.参考答案:【考点】余弦定理;两角和与差的余弦函数;正弦定理.【分析】(1)利用同角三角函数基本关系式可得sinB,再利用三角形的面积计算公式、余弦定理即可得出;(2)利用正弦定理可得sinC,利用同角三角函数基本关系式、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度劳动合同:某互联网公司与员工的就业协议
- 电影胶片显影机市场发展预测和趋势分析
- 2024年度智能家居系统研发与合作合同
- 2024年度带电器家具的个人租房合同:租金减免及优惠政策
- 2024年度版权出租合同标的及出租期限和租金
- 2024年度物联网技术在智慧物流中的应用合同
- 2024年度LED路灯驱动电源技术开发与合作合同
- 2024年度录像资料存储与处理安全合同
- 2024全新彩绘合同协议书下载
- 家庭日用纺织品市场发展现状调查及供需格局分析预测报告
- 掘路施工方案
- JJF1101-2019环境试验设备温度、湿度校准规范-(高清现行)
- 一年级语文部编版上册《四季》课件
- Opera、绿云、西软、中软酒店管理系统对比分析
- 校长的课程与学校教学领导力课件
- 福建厦门廉租房申请条件一览2022(条件+程序+材料)
- (完整PPT)干眼的诊治课件
- 内部术语---大众
- (完整版)居家养老服务项目收费标准一览表
- 48个英语音标课件共48张PPT.ppt
- 三年级上册科学素材-复习资料青岛版(六年制)(2019新版)
评论
0/150
提交评论