2021年安徽省合肥市肥西县桃花初级中学高一数学理联考试卷含解析_第1页
2021年安徽省合肥市肥西县桃花初级中学高一数学理联考试卷含解析_第2页
2021年安徽省合肥市肥西县桃花初级中学高一数学理联考试卷含解析_第3页
2021年安徽省合肥市肥西县桃花初级中学高一数学理联考试卷含解析_第4页
2021年安徽省合肥市肥西县桃花初级中学高一数学理联考试卷含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021年安徽省合肥市肥西县桃花初级中学高一数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若,,则sin(2π﹣α)=()A. B. C. D.参考答案:B【考点】GO:运用诱导公式化简求值.【分析】由条件利用诱导公式求得cosα的值,再根据α的范围求得sinα的值,可得要求式子的值.【解答】解:∵=﹣cosα,∴cosα=.又,∴sinα=﹣=﹣,∴sin(2π﹣α)=﹣sinα=,故选:B.【点评】本题主要考查同角三角函数的基本关系、诱导公式的应用,以及三角函数在各个象限中的符号,属于基础题.2.如图,直线l和圆C,当l从l0开始在平面上绕O匀速旋转(旋转角度不超过90°)时,它扫过的圆内阴影部分的面积S是时间t的函数,则这个函数的图象大致是参考答案:D3.统计某校1000名学生的数学水平测试成绩,得到样本频率分布直方图如图所示,若满分为100分,规定不低于60分为及格,则及格率是(

A.20%

B.25%

C.6%

D.80%

参考答案:D略4.函数的零点是A、(1,1);B、1;C、(2,0);D、2;参考答案:D略5.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为、,则塔高为(

A.

B.

C.

D.参考答案:A6.已知点,,则直线的斜率是A. B. C.

D.参考答案:B7.已知角满足,,且,,则的值为(

)A. B. C. D.参考答案:D【分析】根据角度范围先计算和,再通过展开得到答案.【详解】,,故答案选D【点睛】本题考查了三角函数恒等变换,将是解题的关键.8.下列四个函数中,与表示同一函数的是

)A.

B.

C.

D.参考答案:B9.如果两个球的体积之比为8:27,那么两个球的表面积之比为()A.8:27 B.2:3 C.4:9 D.2:9参考答案:C【考点】LG:球的体积和表面积.【分析】据体积比等于相似比的立方,求出两个球的半径的比,表面积之比等于相似比的平方,即可求出结论.【解答】解:两个球的体积之比为8:27,根据体积比等于相似比的立方,表面积之比等于相似比的平方,可知两球的半径比为2:3,从而这两个球的表面积之比为4:9.故选C.10.一空间几何体的三视图如图所示,则该几何体的体积为()A.2π+2 B.4π+2 C.2π+ D.4π+参考答案:C【考点】由三视图求面积、体积.【专题】立体几何.【分析】由三视图及题设条件知,此几何体为一个上部是四棱锥,下部是圆柱其高已知,底面是半径为1的圆,故分别求出两个几何体的体积,再相加即得组合体的体积.【解答】解:此几何体为一个上部是正四棱锥,下部是圆柱由于圆柱的底面半径为1,其高为2,故其体积为π×12×2=2π棱锥底面是对角线为2的正方形,故其边长为,其底面积为2,又母线长为2,故其高为由此知其体积为=故组合体的体积为2π+故选C【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是组合体的体积,其方法是分部来求,再求总体积.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是高考的新增考点,不时出现在高考试题中,应予以重视.二、填空题:本大题共7小题,每小题4分,共28分11.已知向量,,若,则

;若,则m=

.参考答案:-4,1,,,,解得,

12.已知等差数列的首项及公差d都是整数,前n项和为().若,则通项公式

.参考答案:13.设向量,且的夹角为钝角,则实数k的取值范围

;参考答案:

14.函数f(x)=ax﹣1+4的图象恒过定点P,则P点坐标是

.参考答案:(1,5)【考点】指数函数的单调性与特殊点.【分析】根据指数函数y=ax的图象恒过定点(0,1),即可求出P点的坐标.【解答】解:函数f(x)=ax﹣1+4,令x﹣1=0,解得x=1;当x=1时,f(1)=a0+4=5;所以函数f(x)的图象恒过定点P(1,5).即P点坐标是(1,5).故答案为:(1,5).【点评】本题考查了指数函数y=ax的图象恒过定点(0,1)的应用问题,是基础题目.15.已知等比数列、、、满足,,,则的取值范围为__________.参考答案:【分析】设等比数列、、、的公比为,由和计算出的取值范围,再由可得出的取值范围.【详解】设等比数列、、、的公比为,,,,所以,,,.所以,,故答案为:.【点睛】本题考查等比数列通项公式及其性质,解题的关键就是利用已知条件求出公比的取值范围,考查运算求解能力,属于中等题.16.若函数f(x)满足:对任意一个三角形,只要它的三边长a,b,c都在函数f(x)的定义域内,就有函数值也是某个三角形的三边长.则称函数f(x)为保三角形函数,下面四个函数:①;②;③④为保三角形函数的序号为___________.参考答案:②③任给三角形,设它的三边长分别为,则,不妨设,,①,可作为一个三角形的三边长,但,则不存在三角形以为三边长,故此函数不是保三角形函数②,,,则是保三角形函数③,,是保三角形函数④,当,时,,故此函数不是保三角形函数综上所述,为保三角形函数的是②③

17.函数的单调递增区间为

参考答案:(3,6)

三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)=x2+2x|x﹣a|,其中a∈R.(Ⅰ)当a=﹣1时,在所给坐标系中作出f(x)的图象;(Ⅱ)对任意x∈[1,2],函数f(x)的图象恒在函数g(x)=﹣x+14图象的下方,求实数a的取值范围;(Ⅲ)若关于x的方程f(x)+1=0在区间(﹣1,0)内有两个相异根,求实数a的取值范围.参考答案:【考点】函数的图象;函数与方程的综合运用.【专题】综合题;分类讨论;转化思想;分类法;函数的性质及应用.【分析】(Ⅰ)依题意当a=﹣1时,,据此可作出图象.(Ⅱ)由题意,对任意x∈[1,2],只需(f(x)+x)max<14.分类讨论求得(f(x)+x)max,可得实数a的取值范围.(Ⅲ)记F(x)=f(x)+1,考虑F(x)在区间(﹣1,0)内有两个不同的零点即可.分类讨论,求得a的范围.【解答】解:(Ⅰ)依题意当a=﹣1时,,据此可作出图象如下:(Ⅱ)由题意,对任意x∈[1,2],f(x)<g(x),即f(x)+x<14恒成立,只需(f(x)+x)max<14.另一方面,f(x)=,即f(x)=.当a≥0时,f(x)在(﹣∞,a)和(a,+∞)上均递增,∵f(a)=a2,则f(x)在R上递增,当a<0时,f(x)在(﹣∞,a)和上递增,在上递减,故f(x)在x∈[1,2]上恒单调递增,从而y=f(x)+x在x∈[1,2]上也恒单调递增,则(f(x)+x)max=f(2)+2=4+4|2﹣a|+2<14,即|2﹣a|<2,解得0<a<4,故实数a的取值范围是(0,4).(Ⅲ)记F(x)=f(x)+1,考虑F(x)在区间(﹣1,0)内有两个不同的零点即可.此时,,即,则由(Ⅱ)可知,当a≥0时,F(x)=f(x)+1在R上递增,方程f(x)+1=0在区间(﹣1,0)内至多有一个根,不符合要求,舍去;故a<0.当x≤a时,令F(x)=0,可得(不符合x≤a,舍去)或,但,不在区间(﹣1,0)内.当x>a时,F(x)=3x2﹣2ax+1在区间(﹣1,0)内必有两个不同的零点,从而(﹣1,0)?(a,+∞),所以,解得.【点评】本题主要考查函数的图象,函数与方程的综合应用,体现了转化、分类讨论的数学思想,属于中档题.19.(本大题满分14分)(1)计算:;(2)已知用表示.参考答案:(1)原式=…………………(7′)

(2)∵∴∴…………(14′)20.函数是定义在(﹣1,1)上的奇函数,且.(1)确定函数的解析式;(2)证明函数f(x)在(﹣1,1)上是增函数;(3)解不等式f(t﹣1)+f(t)<0.参考答案:【考点】奇偶性与单调性的综合.【分析】(1)根据奇函数性质有f(0)=0,可求出b,由可求得a值.(2)根据函数单调性的定义即可证明;(3)根据函数的奇偶性、单调性可去掉不等式中的符号“f”,再考虑到定义域可得一不等式组,解出即可.【解答】解:(1)因为f(x)为(﹣1,1)上的奇函数,所以f(0)=0,即b=0.又f()=,所以=,解得a=1.所以f(x)=.(2)任取﹣1<x1<x2<1,则f(x1)﹣f(x2)=﹣=,因为﹣1<x1<x2<1,所以x1﹣x2<0,1﹣x1x2>0,所以f(x1)﹣f(x2)<0,即f(x1)<f(x2).所以函数f(x)在(﹣1,1)上是增函数;(3)f(t﹣1)+f(t)<0可化为f(t﹣1)<﹣f(t).又f(x)为奇函数,所以f(t﹣1)<f(﹣t),f(x)为(﹣1,1)上的增函数,所以t﹣1<﹣t①,且﹣1<t﹣1<1②,﹣1<t<1③;联立①②③解得,0<t<.所以不等式f(t﹣1)+f(t)<0的解集为.21.如图,已知四棱锥P﹣ABCD的底面是矩形,PD⊥平面ABCD,PD=CD,点E是PC的中点,连接DE、BD、BE.(Ⅰ)(i)证明:DE⊥平面PBC;(ii)若把四个面都是直角三角形的四面体叫做直角四面体,试判断四面体EBCD是否为直角四面体,若是写出每个面的直角(只需写结论),若不是请说明理由.(Ⅱ)求二面角P﹣BC﹣A的大小;(Ⅲ)记三棱锥P﹣ABD的体积为V1,四面体EBCD的体积为V2,求.参考答案:【考点】二面角的平面角及求法;棱柱、棱锥、棱台的体积;直线与平面垂直的判定.【专题】证明题;数形结合;数形结合法;立体几何.【分析】(I)由PD⊥平面ABCD得PD⊥BC,由BC⊥CD得BC⊥平面PCD,故BC⊥DE,又因为PD=CD,E是PC中点,所以DE⊥PC,故DE⊥平面PBC;(II)∠PCD就是二面角P﹣BC﹣A的平面角,由△PDC是等腰直角三角形可知二面角P﹣BC﹣A的大小为45°;(III)由E为PC中点可知E到平面ABCD的距离h=PD,而两个棱锥的底面积相等,故=2.【解答】解:(Ⅰ)(i)∵PD⊥底面ABCD,BC?平面ABCD,∴PD⊥BC.∵底面ABCD为矩形,∴BC⊥CD,又∵PD∩CD=D,PD?平面PCD,CD?平面PCD,∴BC⊥平面PCD.∵DE?平面PCD,∴BC⊥DE.∵PD=CD,点E是PC的中点,∴DE⊥PC.又∵PC∩BC=C,BC?平面PBC,PC?平面PBC,∴DE⊥平面PBC.(ii)∵BC⊥平面PCD,∴BC⊥CE,BC⊥CD,∵DE⊥平面PBC,∴DE⊥BE,DE⊥CE,∴四面体EBCD是一个直角四面体,其四个面的直角分别是:∠BCD,∠BCE,∠DEC,∠DEB.(Ⅱ)∵BC⊥CE,CD⊥BC,∴∠PCD就是二面角P﹣BC﹣A的平面角,∵PD=CD,PD⊥CD,∴△PCD是等腰直角三角形,∴∠PCD=45°,即二面角P﹣BC﹣A的大小是45°.(Ⅲ)∵E是PC的中点,∴E到平面ABCD的距离h=,∵底面ABCD是矩形,∴S△ABD=S△BCD,∵V1=S△ABD?PD,V2=S△BCD?PD,∴=2.【点评】本题考查了线面垂直的判定与性质,棱锥的体积计算,属于中档题.22.已知集合A={x|x2﹣2x﹣3≤0,x∈R},B={x|(x﹣m+2)(x﹣m﹣2)≤0,x∈R,m∈R}.(1)若A∩B={x|0≤x≤3},求实数m的值;(2)若A??RB,求实数m的取值范围.参考答案:【考点】交集及其运算;集合的包含关系判断及

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论