08第二章-第二节课件_第1页
08第二章-第二节课件_第2页
08第二章-第二节课件_第3页
08第二章-第二节课件_第4页
08第二章-第二节课件_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二节一元二次方程及其应用(yìngyòng)第一页,共39页。考点一一元二次方程的定义例1下列方程是一元二次方程的是()A.x2+2y=1B.x3-2x=3C.x2+=5D.x2=0【分析(fēnxī)】根据一元二次方程的定义解答.第二页,共39页。【自主解答(jiědá)】选项A,x2+2y=1是二元二次方程,故错误;选项B,x3-2x=3是一元三次方程,故错误;选项C,x2+=5是分式方程,故错误;选项D,x2=0是一元二次方程,故正确.故选D.第三页,共39页。1.(2018·浙江绍兴模拟)在下列方程(fāngchéng)中,属于一元二次方程(fāngchéng)的是()A.x2-3x=+1B.2(x-1)+x=3C.x2-x3+3=0D.x2=2-3x2.写出一个二次项系数为1,且一个根是3的一元二次方程_____________________.Dx2-3x=0(答案(dáàn)不唯一)第四页,共39页。考点二一元二次方程的解法例2(2017·浙江嘉兴中考)用配方(pèifāng)法解方程x2+2x-1=0时,配方(pèifāng)结果正确的是()A.(x+2)2=2 B.(x+1)2=2C.(x+2)2=3 D.(x+1)2=3第五页,共39页。【分析(fēnxī)】把左边配成一个完全平方式,右边化为一个常数,判断出配方结果正确的是哪个即可.【自主解答】x2+2x=1,x2+2x+1=1+1,(x+1)2=2.故选B.第六页,共39页。解一元二次方程的易错点(1)在运用公式法解一元二次方程时,要先把方程化为一般形式(xíngshì),再确定a,b,c的值,否则易出现符号错误;第七页,共39页。(2)用因式分解法确定一元二次方程的解时,一定要保证等号的右边化为0,否则易出现错误;(3)如果一元二次方程的常数项为0,不能在方程两边同时除以未知数,否则会漏掉x=0的情况(qíngkuàng);(4)对于含有不确定量的方程,需要把求出的解代入原方程检验,避免增根.第八页,共39页。3.(2017·浙江温州中考)我们(wǒmen)知道方程x2+2x-3=0的解是x1=1,x2=-3,现给出另一个方程(2x+3)2+2(2x+3)-3=0,它的解是()A.x1=1,x2=3 B.x1=1,x2=-3C.x1=-1,x2=3 D.x1=-1,x2=-3D第九页,共39页。4.(2018·黑龙江齐齐哈尔中考)解方程:2(x-3)=3x(x-3).解:方程化为一般(yībān)形式得2x-6=3x2-9x,即3x2-11x+6=0∵a=3,b=-11,c=6,∴Δ=b2-4ac=(-11)2-4×3×6=49,∴x1=,x2=3.第十页,共39页。考点三一元二次方程根的判别式例3一元二次方程3x2-2x+1=0根的情况是()A.有两个不相等(xiāngděng)的实数根B.有两个相等(xiāngděng)的实数根C.有一个根为1D.没有实数根第十一页,共39页。【分析】根据方程的系数结合根的判别式,可得出Δ=-8<0,由此可得出原方程无实数(shìshù)根,此题得解.【自主解答】∵Δ=(-2)2-4×3×1=-8<0,∴一元二次方程3x2-2x+1=0没有实数(shìshù)根.故选D.第十二页,共39页。利用判别式解题的误区(1)一元二次方程的解一般分为“无实根”“有实根”“有两个相等的实根”“有两个不相等的实根”四种情况(qíngkuàng),注意与判别式的对应关系;(2)利用根的情况(qíngkuàng)确定字母系数的取值范围时,不要漏掉二次项系数不为0这个隐含条件.第十三页,共39页。5.(2018·浙江台州中考)已知关于x的一元二次方程x2+3x+m=0有两个相等的实数(shìshù)根,则m=____.6.(2018·四川内江中考)关于x的一元二次方程x2+4x-k=0有实数(shìshù)根,则k的取值范围是_______.k≥-4第十四页,共39页。考点四一元二次方程根与系数(xìshù)的关系例4(2018·贵州遵义中考)已知x1,x2是关于x的方程x2+bx-3=0的两根,且满足x1+x2-3x1x2=5,那么b的值为()A.4B.-4C.3D.-3第十五页,共39页。【分析】直接利用(lìyòng)根与系数的关系得出x1+x2=-b,x1x2=-3,进而求出答案.【自主解答】∵x1,x2是关于x的方程x2+bx-3=0的两根,∴x1+x2=-b,x1x2=-3,则x1+x2-3x1x2=5,即-b-3×(-3)=5,解得b=4.故选A.第十六页,共39页。7.(2018·四川眉山(méishān)中考)若α,β是一元二次方程3x2+2x-9=0的两根,则的值是()C第十七页,共39页。考点五一元二次方程的应用例5(2018·四川宜宾中考)某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计(yùjì)2019“竹文化”旅游收入达到亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A.2%B.4.4%C.20%D.44%第十八页,共39页。【分析】设该市2018年、2019年“竹文化”旅游收入的年平均(píngjūn)增长率为x,根据2017年及2019年“竹文化”旅游收入总额,即可得出关于x的一元二次方程,解之取其正值即可得出结论.第十九页,共39页。【自主解答】设该市2018年、2019年“竹文化”旅游(lǚyóu)收入的年平均增长率为x.根据题意得2(1+x)2=,解得x1==20%,x2=-2.2(不合题意,舍去).所以该市2018年、2019年“竹文化”旅游(lǚyóu)收入的年平均增长率约为20%.故选C.第二十页,共39页。8.(2018·江苏盐城中考)一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提(qiántí)下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?第二十一页,共39页。解:(1)26(2)设每件商品降价(jiànɡjià)x元时,该商店每天销售利润为1200元.根据题意得(40-x)(20+2x)=1200,整理得x2-30x+200=0,解得x1=10,x2=20.第二十二页,共39页。∵要求(yāoqiú)每件盈利不少于25元,∴x2=20应舍去,解得x=10.答:每件商品降价10元时,该商店每天销售利润为1200元.第二十三页,共39页。考点六根的判别式百变例题(2018·四川乐山中考)已知关于x的一元二次方程mx2+(1-5m)x-5=0(m≠0).(1)求证(qiúzhèng):无论m为任何非零实数,此方程总有两个实数根;(2)若抛物线y=mx2+(1-5m)x-5与x轴交于A(x1,0),B(x2,0)两点,且|x1-x2|=6,求m的值;(3)若m>0,点P(a,b)与点Q(a+n,b)在(2)中的抛物线上(点P,Q不重合),求代数式4a2-n2+8n的值.第二十四页,共39页。【分析】(1)直接利用Δ=b2-4ac,进而利用偶次方的性质得出(déchū)答案;(2)首先解方程,进而由|x1-x2|=6,求出答案;(3)利用(2)中所求,得出(déchū)m的值,进而利用二次函数对称轴得出(déchū)答案.第二十五页,共39页。【自主解答】(1)由题意得Δ=(1-5m)2-4m×(-5)=(5m+1)2≥0,∴无论m为任何(rènhé)非零实数,此方程总有两个实数根.(2)解方程mx2+(1-5m)x-5=0得x1=-,x2=5.由|x1-x2|=6得|--5|=6,解得m=1或m=-.第二十六页,共39页。(3)由(2)得,当m>0时,m=1,此时抛物线为y=x2-4x-5,其对称轴为x=2,由题意知P,Q关于(guānyú)x=2对称,∴=2,即2a=4-n,∴4a2-n2+8n=(4-n)2-n2+8n=16.第二十七页,共39页。变式1:当m=-2时,方程的两根分别是矩形的长和宽,求该矩形外接圆的直径(zhíjìng).解:当m=-2时,原方程可化为2x2-11x+5=0.设方程的两个根分别为x1,x2,则x1+x2=,x1·x2=,∴该矩形对角线长为∴该矩形外接圆的直径(zhíjìng)是第二十八页,共39页。变式2:当m=-1时,方程的两根分别(fēnbié)是等腰三角形的两边,求这个三角形的周长和面积.解:当m=-1时,原方程可化为x2-6x+5=0,解得x1=1,x2=5.当1为腰时,1+1=2<5,不能组成三角形;当5为腰时,周长为5+5+1=11,面积为第二十九页,共39页。变式3:若等腰三角形的一边(yībiān)长为12,另两边长恰好是这个方程的两个根,求这个等腰三角形的周长.解:由mx2+(1-5m)x-5=0(m≠0)得(-mx-1)(x-5)=0,此方程的两根为x1=-,x2=5.第三十页,共39页。若x1≠x2,则x1=12,此等腰三角形的三边(sānbiān)分别为12,12,5,周长为29;若x1=x2=5,等腰三角形的三边(sānbiān)分别为5,5,12,不存在此三角形,∴这个等腰三角形的周长为29.第三十一页,共39页。变式4:若方程有两个相等(xiāngděng)的实数根,请先化简代数式并求出该代数式的值.解:∵关于x的方程mx2+(1-5m)x-5=0(m≠0)有两个相等的实数根,∴(1-5m)2-4m×(-5)=0,即(5m+1)2=0,∴m1=m2=-.第三十二页,共39页。第三十三页,共39页。易错易混点一忽略隐含条件例1关于(guānyú)x的一元二次方程kx2-x+1=0有两个不相等的实数根,则k的取值范围是.第三十四页,共39页。第三十五页,共39页。第三十六页,共39页。易错易混点二漏掉方程(fāngchéng)的解例2用因式分解法解方程(fāngchéng)2(x-2)2=x2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论