版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
RelationstoWolfram’swork:Goodprojectforanordinalanalysis:justbeyondthestrongestcurrentlyanalyzedsystemRelationstoWolfram’swork:Goodprojectforanordinalanalysis:justbeyondthestrongestcurrentlyanalyzedsystemIterationandhyper-iteration/feedbackEx: a)Fixedpointsofinductivedefinitions:iterateddefinitions(Pohlers),inductivedefinitionswithfeedback–theμ-calculus(Möllerfeld)Iterationandhyper-iteration/feedbackExamples: a)Fixedpointsofinductivedefinitions:iterateddefinitions(Pohlers),inductivedefinitionswithfeedback–theμ-calculus(Möllerfeld) b)Turingjump:IterationalonganyordinalgeneratedalongthewayyieldsthehyperarithmeticsetsIterationandhyper-iteration/feedbackExamples: a)Fixedpointsofinductivedefinitions: theμ-calculus b)Turingjump:hyperarithmeticsets c)InfinitetimeTuringmachines:???InfinitetimeTuringmachine (Hamkins&Lewis):aregularTuringmachinewithlimitstages.Atalimitstage:machineisinadedicatedstateheadisonthe0thcellcontentofacellislimsupofthepreviouscontents (i.e.0ifeventually0,1ifeventually1,1ifcofinallyalternating)definitionsRωiswritableif itscharacteristicfunctionisontheoutputtapeattheendofahaltingcomputation.Anordinalαiswritableif somerealcodingα(viasomestandardrepresentation)iswritable.λ:=sup{α|αiswritable}proposition
RωiswritableiffRLλ.definitionsRωiseventuallywritableif itscharacteristicfunctionisontheoutputtape,nevertochange,ofacomputation.Anordinalαiseventuallywritableif somerealcodingα(viasomestandardrepresentation)iseventuallywritable.ζ:=sup{α|αiseventuallywritable}prop
RωiseventuallywritableiffRLζ.definitionsRωisaccidentallywritableif itscharacteristicfunctionisontheoutputtapeatanytimeduringacomputation.Anordinalαisaccidentallywritableif somerealcodingα(viasomestandardrepresentation)isaccidentallywritable.Σ:=sup{α|αisaccidentallywritable}prop
RωisaccidentallywritableiffRLΣSummary:
λ=supwritables ζ=supeventuallywritables Σ=supaccidentallywritablesClearly,λ≤ζ≤Σ.Summary:
λ=supwritables ζ=supeventuallywritables Σ=supaccidentallywritablesClearly,λ≤ζ≤Σ.theorem(Welch)ζistheleastordinalαsuchthatLαhasaΣ2-elementaryextension. (ζistheleastΣ2-extendibleordinal.) TheordinalofthatextensionisΣ. LλistheleastΣ1-elementarysubstructureofLζ.Timetoiterate–def0▼={(e,x)|φe(x)↓(i.e.converges)}Timetoiterate–def0▼={(e,x)|φe(x)↓(i.e.converges)}propThedefinitionsofλ,ζ,andΣrelativize(toλ▼,ζ▼,andΣ▼)tocomputationsfrom0▼. Furthermore,ζ▼istheleastΣ2-extendiblelimitofΣ2-extendibles,theordinalofitsΣ2extensionisΣ▼,andλ▼istheordinalofits leastΣ1-elementarysubstructure.ITTMswitharbitraryiteration:Acomputationmayaskaconvergencequestionaboutanothercomputation.Thiscanbeconsideredcallingasub-compu-tation.Thatsub-computationmightdothesame.Thiscancontinue,generatingatreeofsub-computations.Eventually,perhaps,acomputationisrunwhichcallsnosub-computation.Thiseitherconvergesordiverges.Thatanswerisreturnedtoitscallingcomputation,whichthencontinues.Goodexample
Goodexample
BadexampleOnecannaturallydefinethecourseofacomputationifandonlyifthetreeofsub-computationsiswell-founded.Howisthistobedealtwith?Oneoption:Whenthemaincomputationmakesasub-call,thecallmustbemadewithanordinal.Whenasub-callmakesasub-callitself,thatmustbedonewithasmallerordinal.Definitionsofλ,ζ,andΣrelativize(toλit▼,ζit▼,andΣit▼).defs
βis0-(or1-)extendibleifit’sΣ2-extendible.
βis(α+1)-extendibleifit’saΣ2-extendiblelimitofα-extendibles. βisκ-extendibleifit’saΣ2-extendiblelimitofα-extendiblesforeachα<κ.prop
ζit▼istheleastκwhichisκ-extendible,Σit▼isitsΣ2extension,andλit▼itsleastΣ1substructure.Anotheroption:Allowallpossiblesub-computationcalls,evenifthetreeofsub-computationsisill-founded,andconsideronlythoseforwhichthetreeofsub-computationsjustsohappenstobewell-founded.Sosomelegalcomputationshaveanundefinedresult.Still,amongthosewithadefinedresult,somecomputationsarehalting,andsomedivergentcomputationshaveastableoutput.BIGFACTIfarealiseventuallywritableinthisfashion,thenit’swritable.proofGivene,runthecomputationofφe.Keepasking“ifIcontinuerunningthiscomputationuntilcell0changes,isthatcomputationconvergentordivergent?”Eventuallyyouwillget“divergent”asyouranswer.Thengoontocell1,thencell2,etc.Aftergoingthroughallthenaturalnumbers,youknowtherealonyouroutputtapeistheeventuallywritablerealyouwant.Sohalt.BIGFACTIfarealiseventuallywritableinthisfashion,thenit’swritable.SECONDBIGFACTIfarealisaccidentallywritableinthisfashion,thenit’swritable.QUESTIONWhyisn’tthisacontradiction?Whycan’tyoudiagonalize?QUESTIONWhyisn’tthisacontradiction?Whycan’tyoudiagonalize?ANSWER
Thereisnouniversalmachine.QUESTIONWhyisn’tthisacontradiction?Whycan’tyoudiagonalize?ANSWER
Thereisnouniversalmachine.Assoonasamachinewithcodeforauniversalmachinemakesanill-foundedsub-computationcall,itfreezes.defRisfreezinglywritableifRappearsanytimeduringsuchacomputation,evenifthatcomputationlaterfreezes.claimInordertounderstandthewritablerealsinthiscontext,oneneedstounderstandthefreezinglywritablereals.Onealsoneedstounderstandthetreeofsub-computationsforfreezingcomputations.notationLetΛbethesupoftheordinalssowritable(i.e.withwell-foundedoraclecalls).sub-comp.treeoffreezingcomputation:a)somenodehasmorethanΛ-manychildren,orb)everylevelhassizelessthanΛ,butthosesizesarecofinalinΛ,orc)thetotalnumberofnodesisboundedbeneathΛ.propositionOptionsa)andb)areincompatible:therecannotbeonetreeofsub-computationswith>Λ-muchsplittingbeneathanodeandanotherwiththesplittingsbeneathallthenodescofinalinΛ.Yetanotheroption:parallelcomputation: Anoraclecallmaybethequestion“doesoneofthesecomputationsconverge?”Thecomputationaskedabouthasanindexe,parameterx,andfreevariablen.Ifone(naturalnumber)valuefornyieldsaconvergentcomputation,theansweris“yes”,evenifothervaluesyieldfreezingcomputations.Yetanotheroption:parallelcomputation: Anoraclecallmaybethequestion“doesoneofthesecomputationsconverge?”Answer“yes”meanssomenaturalnumberyieldsaconvergentcomputation,evenifothernumbersyieldfreezing.Answer“no”meansallparametervaluesyieldnon-freezingcomputationsandalla
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 移动互联职业规划
- 单髁膝关节置换术后康复
- 内科护理循环系统疾病病人的护理
- 混合痔护理诊断及措施
- 康复科物理治疗
- Unit 3 Sports and Fitness-【我爱记单词】高中英语教材同步词汇速记课件(人教版2019)
- 急性胃扩张健康教育
- 脑卒中的康复护理小讲课
- 运营资金管理
- 2025版中考冲刺地理填图手册 专题二 地球的运动
- 大班美术教案:拉手小人教案及教学反思
- 《Python Web 企业级项目开发教程(Django 版)》课后答案
- 铜及铜合金物理冶金基础-相图、紫铜
- 智慧酒店无人酒店综合服务解决方案
- 考研英语一新题型历年真题(2005-2012)
- 健身房会籍顾问基础培训资料
- 9脊柱与四肢、神经系统检查总结
- 秀场内外-走进服装表演艺术智慧树知到答案章节测试2023年武汉纺织大学
- 【高分复习笔记】王建《现代自然地理学》(第2版)笔记和课后习题详解
- TSGD0012023年压力管道安全技术监察规程-工业管道(高清晰版)
- SMM英国建筑工程标准计量规则中文 全套
评论
0/150
提交评论