




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
RelationstoWolfram’swork:Goodprojectforanordinalanalysis:justbeyondthestrongestcurrentlyanalyzedsystemRelationstoWolfram’swork:Goodprojectforanordinalanalysis:justbeyondthestrongestcurrentlyanalyzedsystemIterationandhyper-iteration/feedbackEx: a)Fixedpointsofinductivedefinitions:iterateddefinitions(Pohlers),inductivedefinitionswithfeedback–theμ-calculus(Möllerfeld)Iterationandhyper-iteration/feedbackExamples: a)Fixedpointsofinductivedefinitions:iterateddefinitions(Pohlers),inductivedefinitionswithfeedback–theμ-calculus(Möllerfeld) b)Turingjump:IterationalonganyordinalgeneratedalongthewayyieldsthehyperarithmeticsetsIterationandhyper-iteration/feedbackExamples: a)Fixedpointsofinductivedefinitions: theμ-calculus b)Turingjump:hyperarithmeticsets c)InfinitetimeTuringmachines:???InfinitetimeTuringmachine (Hamkins&Lewis):aregularTuringmachinewithlimitstages.Atalimitstage:machineisinadedicatedstateheadisonthe0thcellcontentofacellislimsupofthepreviouscontents (i.e.0ifeventually0,1ifeventually1,1ifcofinallyalternating)definitionsRωiswritableif itscharacteristicfunctionisontheoutputtapeattheendofahaltingcomputation.Anordinalαiswritableif somerealcodingα(viasomestandardrepresentation)iswritable.λ:=sup{α|αiswritable}proposition
RωiswritableiffRLλ.definitionsRωiseventuallywritableif itscharacteristicfunctionisontheoutputtape,nevertochange,ofacomputation.Anordinalαiseventuallywritableif somerealcodingα(viasomestandardrepresentation)iseventuallywritable.ζ:=sup{α|αiseventuallywritable}prop
RωiseventuallywritableiffRLζ.definitionsRωisaccidentallywritableif itscharacteristicfunctionisontheoutputtapeatanytimeduringacomputation.Anordinalαisaccidentallywritableif somerealcodingα(viasomestandardrepresentation)isaccidentallywritable.Σ:=sup{α|αisaccidentallywritable}prop
RωisaccidentallywritableiffRLΣSummary:
λ=supwritables ζ=supeventuallywritables Σ=supaccidentallywritablesClearly,λ≤ζ≤Σ.Summary:
λ=supwritables ζ=supeventuallywritables Σ=supaccidentallywritablesClearly,λ≤ζ≤Σ.theorem(Welch)ζistheleastordinalαsuchthatLαhasaΣ2-elementaryextension. (ζistheleastΣ2-extendibleordinal.) TheordinalofthatextensionisΣ. LλistheleastΣ1-elementarysubstructureofLζ.Timetoiterate–def0▼={(e,x)|φe(x)↓(i.e.converges)}Timetoiterate–def0▼={(e,x)|φe(x)↓(i.e.converges)}propThedefinitionsofλ,ζ,andΣrelativize(toλ▼,ζ▼,andΣ▼)tocomputationsfrom0▼. Furthermore,ζ▼istheleastΣ2-extendiblelimitofΣ2-extendibles,theordinalofitsΣ2extensionisΣ▼,andλ▼istheordinalofits leastΣ1-elementarysubstructure.ITTMswitharbitraryiteration:Acomputationmayaskaconvergencequestionaboutanothercomputation.Thiscanbeconsideredcallingasub-compu-tation.Thatsub-computationmightdothesame.Thiscancontinue,generatingatreeofsub-computations.Eventually,perhaps,acomputationisrunwhichcallsnosub-computation.Thiseitherconvergesordiverges.Thatanswerisreturnedtoitscallingcomputation,whichthencontinues.Goodexample
Goodexample
BadexampleOnecannaturallydefinethecourseofacomputationifandonlyifthetreeofsub-computationsiswell-founded.Howisthistobedealtwith?Oneoption:Whenthemaincomputationmakesasub-call,thecallmustbemadewithanordinal.Whenasub-callmakesasub-callitself,thatmustbedonewithasmallerordinal.Definitionsofλ,ζ,andΣrelativize(toλit▼,ζit▼,andΣit▼).defs
βis0-(or1-)extendibleifit’sΣ2-extendible.
βis(α+1)-extendibleifit’saΣ2-extendiblelimitofα-extendibles. βisκ-extendibleifit’saΣ2-extendiblelimitofα-extendiblesforeachα<κ.prop
ζit▼istheleastκwhichisκ-extendible,Σit▼isitsΣ2extension,andλit▼itsleastΣ1substructure.Anotheroption:Allowallpossiblesub-computationcalls,evenifthetreeofsub-computationsisill-founded,andconsideronlythoseforwhichthetreeofsub-computationsjustsohappenstobewell-founded.Sosomelegalcomputationshaveanundefinedresult.Still,amongthosewithadefinedresult,somecomputationsarehalting,andsomedivergentcomputationshaveastableoutput.BIGFACTIfarealiseventuallywritableinthisfashion,thenit’swritable.proofGivene,runthecomputationofφe.Keepasking“ifIcontinuerunningthiscomputationuntilcell0changes,isthatcomputationconvergentordivergent?”Eventuallyyouwillget“divergent”asyouranswer.Thengoontocell1,thencell2,etc.Aftergoingthroughallthenaturalnumbers,youknowtherealonyouroutputtapeistheeventuallywritablerealyouwant.Sohalt.BIGFACTIfarealiseventuallywritableinthisfashion,thenit’swritable.SECONDBIGFACTIfarealisaccidentallywritableinthisfashion,thenit’swritable.QUESTIONWhyisn’tthisacontradiction?Whycan’tyoudiagonalize?QUESTIONWhyisn’tthisacontradiction?Whycan’tyoudiagonalize?ANSWER
Thereisnouniversalmachine.QUESTIONWhyisn’tthisacontradiction?Whycan’tyoudiagonalize?ANSWER
Thereisnouniversalmachine.Assoonasamachinewithcodeforauniversalmachinemakesanill-foundedsub-computationcall,itfreezes.defRisfreezinglywritableifRappearsanytimeduringsuchacomputation,evenifthatcomputationlaterfreezes.claimInordertounderstandthewritablerealsinthiscontext,oneneedstounderstandthefreezinglywritablereals.Onealsoneedstounderstandthetreeofsub-computationsforfreezingcomputations.notationLetΛbethesupoftheordinalssowritable(i.e.withwell-foundedoraclecalls).sub-comp.treeoffreezingcomputation:a)somenodehasmorethanΛ-manychildren,orb)everylevelhassizelessthanΛ,butthosesizesarecofinalinΛ,orc)thetotalnumberofnodesisboundedbeneathΛ.propositionOptionsa)andb)areincompatible:therecannotbeonetreeofsub-computationswith>Λ-muchsplittingbeneathanodeandanotherwiththesplittingsbeneathallthenodescofinalinΛ.Yetanotheroption:parallelcomputation: Anoraclecallmaybethequestion“doesoneofthesecomputationsconverge?”Thecomputationaskedabouthasanindexe,parameterx,andfreevariablen.Ifone(naturalnumber)valuefornyieldsaconvergentcomputation,theansweris“yes”,evenifothervaluesyieldfreezingcomputations.Yetanotheroption:parallelcomputation: Anoraclecallmaybethequestion“doesoneofthesecomputationsconverge?”Answer“yes”meanssomenaturalnumberyieldsaconvergentcomputation,evenifothernumbersyieldfreezing.Answer“no”meansallparametervaluesyieldnon-freezingcomputationsandalla
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖北省部分省级示范高中2024~2025学年下学期高一期中测试数学答案
- 江苏省海门市2024-2025学年初三第四次月考物理试题试卷含解析
- 四川长江职业学院《信息技术基础》2023-2024学年第二学期期末试卷
- 武汉信息传播职业技术学院《文化创意产品设计》2023-2024学年第二学期期末试卷
- 六盘水幼儿师范高等专科学校《植物地理学实验》2023-2024学年第二学期期末试卷
- 山东省青岛市胶州市重点名校2024-2025学年初三数学试题第一次联考试题含解析
- 上饶卫生健康职业学院《商业银行业务与经营》2023-2024学年第二学期期末试卷
- 唐山幼儿师范高等专科学校《质量统计分析》2023-2024学年第二学期期末试卷
- 江西省抚州市临川二中学、崇仁二中学2025届初三第三次联合模拟化学试题含解析
- 山东省青岛市市北区2025年初三4月模拟训练化学试题含解析
- 电梯井内脚手架搭拆施工专项方案
- 涉外商标实务培训课件
- 2022年2月兴业银行审计部招聘人员模拟试题3套(含答案解析)
- 社会研究方法复习资料(风笑天版)
- 《青年友谊圆舞曲》音乐课件
- 博士后出站研究报告
- 中华人民共和国海关进出境自用物品申请表
- 高一语文《赤壁赋》 完整版课件PPT
- 纸包装生产企业设备管理课件
- 北师大版小学数学二年级下册第三单元《练习二》教学设计建议及课本习题解析
- 货物交接单范文
评论
0/150
提交评论