苏科版七年级下册数学《12.3互逆命题》课件_第1页
苏科版七年级下册数学《12.3互逆命题》课件_第2页
苏科版七年级下册数学《12.3互逆命题》课件_第3页
苏科版七年级下册数学《12.3互逆命题》课件_第4页
苏科版七年级下册数学《12.3互逆命题》课件_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

12.3互逆命题(1)七年级(下册)初中数学12.3互逆命题(1)两直线平行,同位角相等.条件结论同位角相等,两直线平行.条件结论【问题情境】12.3互逆命题(1)如果a+b>0,那么a>0,b>0如果a

>0,b

>0

,那么a+b>0【问题情境】条件结论条件结论12.3互逆命题(1)

两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.

其中一个命题是另一个命题的逆命题.

1.下列各组命题是否是互逆命题:(1)“正方形的四个角都是直角”与“四个角都是直角的四边形是正方形”;(2)“等于同一个角的两个角相等”与“如果两个角都等于同一个角,那么这两个角相等”;(3)“对顶角相等”与“如果两个角相等,那么这两个角是对顶角”;(4)“同位角相等,两直线平行”与“同位角不相等,两直线不平行”.12.3互逆命题(1)【试一试】2.说出下列命题的逆命题,并指出原命题和逆命题的真假.(1)原命题:若ab=0,则a=0;

(2)原命题:自然数是整数;(3)原命题:不是对顶角的两个角不相等;

12.3互逆命题(1)【试一试】逆命题:若a=0,则ab=0

.逆命题:整数是自然数.逆命题:不相等的两个角不是对顶角.(4)原命题:内错角相等;

(5)原命题:互为相反数的两个数和为0;

12.3互逆命题(1)【试一试】逆命题:相等的角是内错角.逆命题:和为0的两个数互为相反数.

3.举反例说明下列命题是假命题:(1)如果a<b,则ac<bc;例如:

(2)一个角的补角一定大于这个角;例如:(3)如果a≠0,b≠0,那么a2+b2=(a+b)2;例如:(4)质数都是奇数;例如:12.3互逆命题(1)【练一练】举反例说明下列命题是假命题:(5)多边形的外角和小于内角和;例如:(6)如果a>b,那么(a+b)(a-b)>0;例如:(7)在三角形中,如果有两个锐角,那么第三个角也是锐角;例如:12.3互逆命题(1)【练一练】第一次数学危机公元前五世纪,毕达哥拉斯学派认为“万物皆是数”——任何数都可以表示为整数或整数的比.他的门徒希伯索斯发现一个反例:当正方形边长为整数1时,对角线的长就无法用整数表示!从而引发第一次数学危机.希伯索斯因为没有按毕达哥拉斯“保持沉默”的要求,把这个问题公之于众,结果被投尸大海,葬身鱼腹,造成历史上震惊数学界的无理数发现惨案.12.3互逆命题(1)【拓展延伸】12.3互逆命题(1)著名的反例公元1640年,法国著名数学家费尔马发现:220+1=3,221+1=5,

222+1=17,

223+1=257,

224+1=65537……而3、5、17、257、65537都是质数,于是费尔马猜想:对于一切自然数n,22n+1都是质数,可是,到了1732年,数学家欧拉发现:225+1=4294967297=641×6700417.这说明了22

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论