2023年高考数学总复习第二章 函数概念与基本初等函数第9节:函数模型及其应用(学生版)_第1页
2023年高考数学总复习第二章 函数概念与基本初等函数第9节:函数模型及其应用(学生版)_第2页
2023年高考数学总复习第二章 函数概念与基本初等函数第9节:函数模型及其应用(学生版)_第3页
2023年高考数学总复习第二章 函数概念与基本初等函数第9节:函数模型及其应用(学生版)_第4页
2023年高考数学总复习第二章 函数概念与基本初等函数第9节:函数模型及其应用(学生版)_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年高考数学总复习第二章函数概念与基本初等函数

第9节函数模型及其应用

考试要求1.了解指数函数、对数函数、寡函数的增长特征,结合具体实例体会

直线上升、指数增长、对数增长等不同函数类型增长的含义;2.了解函数模型(如

指数函数、对数函数、累函数、分段函数等在社会生活中普遍使用的函数模型)

的广泛应用.

□知识诊断•基础夯实

知识梳理

L指数、对数'鬲函数模型性质比较

函数y=axy=logaXy=xn

性质(«>1)(。>1)(心0)

在(0,+8)

单调递增单调递增单调递增

上的增减性

增长速度越来越快越来越慢相对平稳

随X的增大逐渐表随X的增大逐渐表随〃值变化而各有

图像的变化

现为与通平行现为与X轴平行不同

2.几种常见的函数模型

函数模型函数解析式

一次函数模型J(x)=ax+b(a,b为常数,aWO)

二次函数模型/(x)=ax2+hx+c(a,b,c为常数,aWO)

与指数函数相

J(x)=bax+c(a,b,c为常数,a>0且aWl,bWO)

关的模型

与对数函数相

/(x)=Z)logux+c(a,b,c为常数,a>0且aWl,640)

关的模型

与基函数相关

f(x)=cixn+b(a,b,n为常数,aWO)

的模型

第1页共16页

常用结论

1.“直线上升”是匀速增长,其增长量固定不变;“指数增长”先慢后快,其增

长量成倍增加,常用“指数爆炸”来形容;“对数增长”先快后慢,其增长量越

来越小.

2.充分理解题意,并熟练掌握几种常见函数的图像和性质是解题的关键.

3.易忽视实际问题中自变量的取值范围,需合理确定函数的定义域,必须验证数

学结果对实际问题的合理性.

诊断自测

1.思考辨析(在括号内打“,”或"X”)

(1)某种商品进价为每件100元,按进价增加10%出售,后因库存积压降价,若按

九折出售,则每件还能获利.()

(2)函数y=2'的函数值比少=/的函数值大.()

(3)不存在xo,使a"<x6<logaxo.()

(4)在(0,+8)上,随着x的增大,丁=优伍>1)的增长速度会超过并远远大于丁=

犬伍>0)的增长速度.()

2.(易错题)已知/(x)=x2,g(x)=2S/?(%)=log2X,当x@(4,+8)时,对三个函数

的增长速度进行比较,下列选项中正确的是()

Ay(x)>g(x)>/j(x)

B.g(x)次x)>〃(x)

C.g(x)>//(x)>/(x)

D/)>〃(x)>g(x)

3.(易错题)当生物死亡后,其体内原有的碳14的含量大约每经过5730年衰减为

原来的一半,这个时间称为“半衰期”.当死亡生物体内的碳14含量不足死亡前

的千分之一时,用一般的放射性探测器就测不到了.若某死亡生物体内的碳14用

该放射性探测器探测不到,则它经过的“半衰期”个数至少是()

A.8B.9C.10D.11

4.(2022•江苏新高考基地大联考)香农定理是所有通信制式最基本的原理,它可以

用香农公式C=aog2〔对来表示,其中C是信道支持的最大速度或者叫信道容

第2页共16页

量,8是信道带宽(Hz),S是平均信号功率(W),N是平均噪声功率(W).已知平均

信号功率为1000W,平均噪声功率为10W,在不改变平均信号功率和信道带宽

的前提下,要使信道容量增大到原来的2倍,则平均噪声功率约降为()

A.0.1WB.1.0WC.3.2WD.5.0W

5.用长度为24的材料围一矩形场地,中间加两道隔墙,要使矩形的面积最大,则

隔墙的长度为.

6.(2020•北京卷)为满足人民对美好生活的向往,环保部门要求相关企业加强污水

治理,排放未达标的企业要限期整改.设企业的污水排放量〃与时间,的关系为W

用一的大小评价在⑷6]这段时间内企业污水治理能力的强

h-a

弱.已知整改期内,甲、乙两企业的污水排放量与时间的关系如图所示.

给出下列四个结论:

①在[九,0这段时间内,甲企业的污水治理能力比乙企业强;

②在72时刻,甲企业的污水治理能力比乙企业强;

③在时刻,甲、乙两企业的污水排放都已达标;

④甲企业在[0,力],也,0,上2,旬这三段时间中,在[0,用的污水治理能力最强.

其中所有正确结论的序号是.

考点突破•题型剖析

考点一利用函数图像刻画变化过程

1.已知高为满缸水量为2的鱼缸的轴截面如图所示,其底部破了一个小洞,

满缸水从洞中流出,若鱼缸水深为人时水的体积为。,则函数。=火〃)的大致图像

是()

第3页共16页

HhO\

A

2.小菲在学校选修课中了解到艾宾浩斯遗忘曲线,为了解自己记忆一组单词的情

况,她记录了随后一个月的有关数据,绘制图像,拟合了记忆保持量{x)与时间

7

-----x+1,

20

x(天)之间的函数关系於)='191

记忆保持量

0.8

0.6

0.4

0.2

24681012

则下列说法错误的是()

A.随着时间的增加,小菲的单词记忆保持量降低

B.第一天小菲的单词记忆保持量下降最多

C.9天后,小菲的单词记忆保持量低于40%

D.26天后,小菲的单词记忆保持量不足20%

3.(2022•郑州质检)水池有两个相同的进水口和一个出水口,每个口进出水的速度

如图甲、乙所示,某天0时到6时该水池的蓄水量如图丙所示,给出以下3个论

断:

蓄水量

1

时间123456时间

甲丙

①0时到3时只进水不出水;

②3时到4时不进水只出水;

③4时到5时不进水也不出水.

则一定正确的论断是(填序号).

第4页共16页

4.(2021・西安调研)为研究西南高寒山区一种常见树的生长周期中前10年的生长规

律,统计显示,生长4年的树高为:米,如图所示的散点图,记录了样本树的生长

时间(年)与树高丁(米)之间的关系.请你据此判断,在下列函数模型:®y=2'-ai

②y=a+log2f;③y=5+a;④y=3+a中(其中。为正的常实数),拟合生长年数

与树高的关系最好的是(填写序号),估计该树生长8年后的树高为

________米.

,y

4

3.

2.­**

1•

oli立*ZSI17

考点二二次函数模型

例1(1)某汽车销售公司在48两地销售同一种品牌的汽车,在工地的销售利润(单

位:万元)为刈=4.卜一0.52,在6地的销售利润(单位:万元)为》=2x,其中x

为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的

最大利润是()

A.10.5万元B.l1万元

C.43万元D.43.025万元

(2)某地西红柿上市后,通过市场调查,得到西红柿种植成本。(单位:元/100kg)

与上市时间/(单位:天)的数据如下表:

时间t60100180

种植成本Q11684116

根据上表数据,从下列函数中选取一个函数描述西红柿种植成本Q与上市时间t

的变化关系:

Q=at+b,Q=at2+bt+c,Q=ab',

Q=a\ogbt.

利用你选取的函数,求:

①西红柿种植成本最低时的上市天数是;

②最低种植成本是元/100kg.

第5页共16页

训练1(1)(2021•广州模拟)某工厂生产某种产品固定成本为2000万元,并且每生

产一单位产品,成本增加10万元.又知总收入K是单位产品数。的函数,K(Q)

=40。一短。2,则总利润乂。)的最大值是万元.

(2)某城市对一种售价为每件160元的商品征收附加税,税率为7?%(即每销售100

130—

元征税火元),若每年销售量为I2J万件,要使附加税不少于128万元,则及

的取值范围是()

A.[4,8]B.[6,10]

C.[4%,8%]D.[6%,10%]

|考点三指数、对数函数模型____________

例2(1)一个放射性物质不断衰变为其他物质,每经过一年就有:的质量发生衰变.

若该物质余下质量不超过原有的1%,则至少需要的年数是()

A.6B.5C.4D.3

(2)(2021•唐山联考)尽管目前人类还无法准确地预报地震,但科学家通过研究,己

经对地震有所了解,例如,地震释放出的能量£(单位:焦耳)与地震里氏震级M

之间的关系为lgE=4.8+1.5M.

①已知地震等级划分为里氏12级,根据等级范围又分为三种类型,其中小于2.5

级的为“小地震”,介于2.5级到4.7级之间的为“有感地震”,大于4.7级的为

“破坏性地震”,若某次地震释放能量约10时焦耳,试确定该次地震的类型;

②2008年汶川地震为里氏8级,2011年日本地震为里氏9级,问:2011年日本

地震所释放的能量是2008年汶川地震所释放的能量的多少倍?(取加=3.2)

第6页共16页

训练2(2021•贵阳调研)一片森林原来面积为“,计划每年砍伐一些树,且每年砍

伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环

境,森林面积至少要保留原面积的已知到今年为止,森林剩余面积为原来的也.

42

(1)求每年砍伐面积的百分比;

(2)到今年为止,该森林已砍伐了多少年?

第7页共16页

考点四分段函数模型

例3小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小

型电子产品需投入年固定成本3万元,每生产x万件,需另投入流动成本四(x)万

元,在年产量不足8万件时,做x)=$2+x(万元).在年产量不小于8万件时,W(x)

=6x+期-38(万元).每件产品售价5元.通过市场分析,小王生产的商品当年能

X

全部售完.

⑴写出年利润L(x)(万元)关于年产量x(万件)的函数解析式;(注:年利润=年销售

收入一固定成本一流动成本)

(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多

少?

第8页共16页

训练3某校高三(1)班学生为了筹措经费给班上购买课外读物,班委会成立了一个

社会实践小组,决定利用暑假八月份(按30天计算)轮流换班去销售一种时令水果.

在这30天内每斤水果的收入p(元)与时间/(天)满足如图所示的函数关系,已知日

销售量0(斤)与时间/(天)满足一次函数关系(具体数据如下表所示).

(1)根据提供的图像和表格,写出每斤水果的收入p(元)与时间/(天)所满足的函数

关系式及日销售量。(斤)与时间/(天)的一次函数关系式;

⑵写出销售水果的日收入y(元)与t的函数关系式,并求这30天中第几天的日收

入最大?最大为多少元?

第9页共16页

I分层训练•巩固提升

1.某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3

年年产量保持不变,则该厂6年来这种产品的总产量C与时间/(年)的函数关系图

像正确的是()

CtcCC

ABCD

2.(2022・绵阳诊断)某数学小组进行社会实践调查,了解到某公司为了实现1000

万元利润目标,准备制订激励销售人员的奖励方案:在销售利润超过10万元时,

按销售利润进行奖励,且奖金六单位:万元)随销售利润x(单位:万元)的增加而

增加,但奖金总数不超过5万元,同时奖金不超过利润的25%.同学们利用函数知

识,设计了如下函数模型,其中符合公司要求的是(参考数据:1.0021。°°心7.37,

1g7心0.845)()

A.y=0.25xB.y=1.002*

,k-i]

C.^=log7x+1D.y=tanll0J

3.(2021•全国大联考)如图,矩形花园Z8C。的边N8靠在墙尸0上,另外三边是由

篱笆围成的.若该矩形花园的面积为4平方米,墙尸。足够长,则围成该花园所需

要篱笆的()

Q

A.最大长度为8米

B.最大长度为4啦米

第10页共16页

C.最小长度为8米

D.最小长度为4啦米

4.(2022・兰州质检)设光线通过一块玻璃,光线强度损失10%,如果光线原来的强

度为左(Q0),通过x块这样的玻璃以后光线的强度为小则y=/0.9'(xGN+),那

么光线强度减弱到原来的;以下时,至少通过这样的玻璃的块数为(参考数据:

lg3po.477)()

A.9B.10C.llD.12

5.(2021・济南检测)人们用分贝(dB)来划分声音的等级,声音的等级d(x)(单位:dB)

与声音强度x(单位:W/n?)满足d(x)=91g[x:0_13•一般两人小声交谈时,声音的

等级约为54dB,在有50人的课堂上讲课时,老师声音的等级约为63dB,那么

老师上课时声音强度约为一般两人小声交谈时声音强度的()

A.1倍B.10倍

C.100倍D.1000倍

6.某工厂一年中各月份的收入、支出情况的统计图如图所示,则下列说法中错误

的是()

A.收入最高值与收入最低值的比是3:1

B.结余最高的月份是7月

C.1至2月份的收入的变化量与4至5月份的收入的变化量相同

第11页共16页

D.前6个月的平均收入为40万元

7.我国的烟花名目繁多,其中“菊花”烟花是最壮观的烟花之一.制造时一般是期

望在它达到最高点时爆裂.如果烟花距地面的高度用单位:米)与时间(单位:s)

之间的关系为/?(/)=-4.9/2+14.7z+17,那么烟花冲出后在爆裂的最佳时刻距地

面高度约为米.

8.李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、

桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这

四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单

顾客网上支付成功后,李明会得到支付款的80%.

(1)当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付元;

(2)在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,

则x的最大值为.

9.(2021・武汉模拟)复利是一种计算利息的方法,即把前一期的利息和本金加在一

起算作本金,再计算下一期的利息.某同学有压岁钱1000元,存入银行,年利率

为2.25%,若放入微信零钱通或者支付宝的余额宝,年利率可达4.01%.如果将这

1000元选择合适方式存满5年,可以多获利息元.

(参考数据:1.02255^1.118,1.04015比1.217)

第12页共16页

10.候鸟每年都要随季节的变化而进行大规模的迁徙,研究某种鸟类的专家发现,

该种鸟类的飞行速度。(单位:m/s)与其耗氧量Q之间的关系为V=a+〃og3*(其

中a,6是实数).据统计,该种鸟类在静止时其耗氧量为30个单位,而其耗氧量

为90个单位时,其飞行速度为1m/s.

(1)求出a,b的值;

(2)若这种鸟类为赶路程,飞行的速度不能低于2m/s,则其耗氧量至少要多少个

单位?

第13页共16页

11.近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享

单车公司计划在甲、乙两座城市共投资240万元.根据行业规定,每个城市至少要

投资80万元,由前期市场调研可知:甲城市收益P与投入a(单位:万元)满足产

P-a+2,80/W120,

=44五一6,乙城市收益。与投入a(单位:万元)满足0="

32,120<aW160,

设甲城市的投入为x(单位:万元),两个城市的总收益为")(单位:万元).

⑴当投资甲城市128万元时,求此时公司的总收益;

(2)试问:如何安排甲、乙两个城市的投资,才能使公司总收益最大?

第14页共16页

12.(2022・保定质检)分子间作用力是只存在于分子与分子之间或惰性气体原子间

的作用力,在一定条件下,两个原子接近,则彼此因静电作用产生极化,从而导

致有相互作用力,称范德瓦尔斯相互作用.今有两个惰性气体原子,原子核正电荷

的电荷量为q,这两个相距火的惰性气体原子组成体系的能量中有静电相互作用

能U,其计算式子为品炉.()+-------J——-1—),其中,品为静电常

RR+X\—X2R+X\R-

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论