版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数模入门和初等模型第1页,课件共63页,创作于2023年2月玩具、照片、飞机、火箭模型……~实物模型水箱中的舰艇、风洞中的飞机……~物理模型地图、电路图、分子结构图……~符号模型模型是为了一定目的,对客观事物的一部分进行简缩、抽象、提炼出来的原型的替代物模型集中反映了原型中人们需要的那一部分特征我们常见的模型1.1从现实对象到数学模型第2页,课件共63页,创作于2023年2月你碰到过的数学模型——“航行问题”用x
表示船速,y表示水速,列出方程:答:船速每小时20千米/小时.甲乙两地相距750千米,船从甲到乙顺水航行需30小时,从乙到甲逆水航行需50小时,问船的速度是多少?x=20y=5求解第3页,课件共63页,创作于2023年2月航行问题建立数学模型的基本步骤作出简化假设(船速、水速为常数);用符号表示有关量(x,y表示船速和水速);用物理定律(匀速运动的距离等于速度乘以时间)列出数学式子(二元一次方程);求解得到数学解答(x=20,y=5);回答原问题(船速每小时20千米/小时)。第4页,课件共63页,创作于2023年2月数学模型(MathematicalModel)和数学建模(MathematicalModeling)对于一个现实对象,为了一个特定目的,根据其内在规律,作出必要的简化假设,运用适当的数学工具,得到的一个数学结构。建立数学模型的全过程(包括表述、求解、解释、检验等)数学模型数学建模第5页,课件共63页,创作于2023年2月电子计算机的出现及飞速发展;数学以空前的广度和深度向一切领域渗透。数学建模作为用数学方法解决实际问题的第一步,越来越受到人们的重视。
在一般工程技术领域数学建模仍然大有用武之地;
在高新技术领域数学建模几乎是必不可少的工具;
数学进入一些新领域,为数学建模开辟了许多处女地。1.2
数学建模的重要意义第6页,课件共63页,创作于2023年2月数学建模的具体应用
分析与设计
预报与决策
控制与优化
规划与管理数学建模计算机技术知识经济如虎添翼生产过程中产品质量指标的预报,气象预报,人口预报,经济增长预报
描述药物浓度在人体内的变化,跨音速空气流和激波的数学模型,用数值模拟设计新的飞机翼型
电力,化工生产过程的最优控制,零件设计中的参数优化
生产计划,资源配置,运输网络规划,水库优化调度,以及排队策略,物资管理
第7页,课件共63页,创作于2023年2月
1.了解问题的实际背景,明确建模目的,收集掌握必要的数据资料。
2.在明确建模目的,掌握必要资料的基础上,通过对资料的分析计算,找出起主要作用的因素,经必要的精炼、简化,提出若干符合客观实际的假设。
3.在所作假设的基础上,利用适当的数学工具去刻划各变量之间的关系,建立相应的数学结构——即建立数学模型。
4.模型求解。
5.模型的分析与检验。
在难以得出解析解时,也应当借助计算机求出数值解。
1.3
数学建模步骤和示例实体信息(数据)假设建模求解验证应用第8页,课件共63页,创作于2023年2月示例:
可口可乐饮料罐的形状可口可乐、雪碧、健力宝等销量极大的饮料罐(易拉罐)顶盖的直径和从顶盖到底部的高之比为多少?为什么?它们的形状为什么是这样的?第9页,课件共63页,创作于2023年2月第10页,课件共63页,创作于2023年2月示例:
可口可乐饮料罐的形状找一个雪碧饮料罐具体测量一下:它顶盖的直径和从顶盖到底部的高:约为6厘米和12厘米.中间胖的部分的直径约为6.6厘米,胖的部分高约为10.2厘米.可口可乐饮料罐上标明净含量为355毫升(即355立方厘米).根据有关的数据,要求通过数学建模的方法来回答相关的问题.
第11页,课件共63页,创作于2023年2月我们先看这样的数学题:“用铁皮做成一个容积一定的圆柱形的无盖(或有盖)容器,问应当如何设计,才能使用料最省,这时圆柱的直径和高之比为多少?”(一般数学分析或高等数学教材中导数的应用(极值问题)部分的一道例题).实际上,用几何语言来表述就是:体积给定的圆柱体,其表面积最小的尺寸(半径和高)为多少?
第12页,课件共63页,创作于2023年2月表面积用S表示,体积用V表示,则,即圆柱的直径和高之比为1:1第13页,课件共63页,创作于2023年2月问题分析和模型假设饮料罐近似看成一个正圆柱是有一定合理性的.要求饮料罐内体积一定时,求能使易拉罐制作所用的材料最省的顶盖的直径和从顶盖到底部的高之比.实际上,饮料罐的形状是如下平面图形绕其中轴线旋转而成的立体.第14页,课件共63页,创作于2023年2月模型的建立
饮料罐的半径为(因此,直径为),罐的高为.h罐内体积为.V除顶盖外的材料的厚度.b顶盖的厚度为(顶盖就能感觉到更硬)其中,r,h是自变量,所用材料的体积SV是因变量,而b和V是固定参数,是待定参数第15页,课件共63页,创作于2023年2月饮料罐侧面所用材料的体积
罐内体积所用材料的体积顶盖和底部所用材料第16页,课件共63页,创作于2023年2月
因,所以带,的项可以忽略,所以,
这是极其重要的合理假设或简化!
其中是S目标函数,是约束条件,V是已知的(即罐内体积一定),即要在体积一定的条件下,求罐的体积最小的
r,h和使得r,h和测量结果吻合.这是一个求条件极值的问题.
第17页,课件共63页,创作于2023年2月模型的求解从约束中解出一个变量,化条件极值问题为求一元函数的无条件极值问题使原问题化为:求使S最小,即,求r使下式最小.第18页,课件共63页,创作于2023年2月求临界点:令其导数为零得测量数据为,即即顶盖厚度是其他材料厚度3倍
本题还可Lagrange乘子法来解(增加一个变量化条件极值问题为多元函数无条件极值问题)第19页,课件共63页,创作于2023年2月模型验证及进一步的分析
有人测量过顶盖的厚度确实为其他材料厚度的3倍.如果易拉罐的半径为3厘米,则其体积为装不下那么多饮料,为什么?模型到底对不对?第20页,课件共63页,创作于2023年2月实际上,饮料罐的形状是左平面图形绕其中轴线旋转而成的立体.可以把饮料罐的体积看成两部分,一是上底半径为3厘米,下底半径为3.3厘米,高为1厘米的锥台,二是半径为3.3厘米,高为10.2厘米的圆柱体.它们的体积分别为31.2立方厘米和349立方厘米总共为380.2立方厘米.测量结果为:未打开罐时饮料罐的重量为370克,倒出来的可乐确实重355克,空的饮料罐重量为15克,装满水的饮料罐重量为380克.这和我们的近似计算380.2立方厘米十分接近!饮料罐不能装满饮料(365克),而是留有10立方厘米的空间余量.第21页,课件共63页,创作于2023年2月进一步讨论此外,诸如底部的形状,上拱的底面,顶盖实际上也不是平面的,略有上拱,顶盖实际上是半径为3+0.4+0.2=3.6平方厘米的材料冲压而成的,从顶盖到胖的部分的斜率为0.3,这些要求也许保证了和饮料罐的薄的部分的焊接(粘合)很牢固,耐压.所有这些都是物理、力学、工程或材料方面的要求,必须要有有关方面的实际工作者或专家来确定.因此,我们也可以体会到真正用数学建模的方法来进行设计是很复杂的过程,只依靠数学知识是不够的,必须和实际工作者的经验紧密结合.第22页,课件共63页,创作于2023年2月
1.了解问题的实际背景,明确建模目的,收集掌握必要的数据资料。
2.在明确建模目的,掌握必要资料的基础上,通过对资料的分析计算,找出起主要作用的因素,经必要的精炼、简化,提出若干符合客观实际的假设。
3.在所作假设的基础上,利用适当的数学工具去刻划各变量之间的关系,建立相应的数学结构建模——即建立数学模型。
4.模型求解。
5.模型的分析与检验。
在难以得出解析解时,也应当借助计算机求出数值解。
数学建模的一般步骤第23页,课件共63页,创作于2023年2月模型评价模型应用模型检验第24页,课件共63页,创作于2023年2月应用领域人口,生态,交通,环境,经济等数学方法初等数学,网络,微分方程,运筹,随机模型等表现特性描述,分析,预报,决策,控制等建模目的了解程度白箱灰箱黑箱确定和随机静态和动态线性和非线性离散和连续1.4数学模型的分类第25页,课件共63页,创作于2023年2月①数学建模实践的每一步中都蕴含着能力上的锻炼,在调查研究阶段,需要用到观察能力、分析能力和数据处理能力等。在提出假设时,又需要用到想象力和归纳简化能力。②在真正开始自己的研究之前,还应当尽可能先了解一下前人或别人的工作,使自己的工作成为别人研究工作的继续而不是别人工作的重复,你可以把某些已知的研究结果用作你的假设,去探索新的奥秘。因此我们还应当学会在尽可能短的时间内查到并学会想应用的知识的本领。③还需要你多少要有点创新的能力。这种能力不是生来就有的,建模实践就为你提供了一个培养创新能力的机会。1.5
数学建模与能力的培养开设数学建模课的主要目的为了提高学生的综合素质,增强应用数学知识解决实际问题的本领。撰写论文的初步方法.数学建模与其说是一门技术,不如说是一门艺术.
技术大致有章可循,艺术无法归纳成普遍适用的准则.第26页,课件共63页,创作于2023年2月1雨中行走2实物交换3汽车刹车距离4公平的席位分配5发射卫星为什么用三级火箭系统?1.6
初等方法建模第27页,课件共63页,创作于2023年2月一个雨天,你有件急事需要从家中到学校去,学校离家不远,仅一公里,况且事情紧急,你来不及花时间去翻找雨具,决定碰一下运气,顶着雨去学校。假设刚刚出发雨就大了,但你不打算再回去了,一路上,你将被大雨淋湿。一个似乎很简单的事情是你应该在雨中尽可能地快走,以减少雨淋的时间。但如果考虑到降雨方向的变化,在全部距离上尽力地快跑不一定是最好的策略。试建立数学模型来探讨如何在雨中行走才能减少淋雨的程度。1雨中行走第28页,课件共63页,创作于2023年2月1建模准备建模目标:在给定的降雨条件下,设计一个雨中行走的策略,使得你被雨水淋湿的程度最小。主要因素:淋雨量,降雨的大小,降雨的方向(风),路程的远近,行走的速度2)降雨大小用降雨强度厘米/时来描述,降雨强度指单位时间平面上的降下水的厚度。在这里可视其为一常量。3)风速保持不变。4)你一定常的速度米/秒跑完全程米。2模型假设及符号说明1)把人体视为长方体,身高米,宽度米,厚度米。淋雨总量用升来记。由于人身体的表面非常复杂,为了使问题简化,假设将人视为长方体.第29页,课件共63页,创作于2023年2月2)降雨大小用降雨强度厘米/时来描述,降雨强度指单位时间平面上的降下水的厚度。在这里可视其为一常量。3)风速保持不变。4)你一定常的速度米/秒跑完全程米。1)把人体视为长方体,身高米,宽度米,厚度米。淋雨总量用升来记。2模型假设及符号说明由于人身体的表面非常复杂,为了使问题简化,假设将人视为长方体.第30页,课件共63页,创作于2023年2月3模型建立与计算1)不考虑雨的方向,此时,你的前后左右和上方都将淋雨。淋雨的面积雨中行走的时间降雨强度模型中结论,淋雨量与速度成反比。这也验证了尽可能快跑能减少淋雨量。第31页,课件共63页,创作于2023年2月从而可以计算被淋的雨水的总量为2.041(升)。经仔细分析,可知你在雨中只跑了2分47秒,但被淋了2升的雨水,大约有4酒瓶的水量。这是不可思议的。表明:用此模型描述雨中行走的淋雨量不符合实际。原因:不考虑降雨的方向的假设,使问题过于简化。第32页,课件共63页,创作于2023年2月2)考虑降雨方向。人前进的方向若记雨滴下落速度为(米/秒)雨滴的密度为雨滴下落的反方向表示在一定的时刻在单位体积的空间内,由雨滴所占的空间的比例数,也称为降雨强度系数。所以,因为考虑了降雨的方向,淋湿的部位只有顶部和前面。分两部分计算淋雨量。第33页,课件共63页,创作于2023年2月顶部的淋雨量前表面淋雨量总淋雨量(基本模型)第34页,课件共63页,创作于2023年2月可以看出:淋雨量与降雨的方向和行走的速度有关。问题转化为给定,如何选择使得最小。情形1结果表明:淋雨量是速度的减函数,当速度尽可能大时淋雨量达到最小。假设你以6米/秒的速度在雨中猛跑,则计算得第35页,课件共63页,创作于2023年2月情形2结果表明:淋雨量是速度的减函数,当速度尽可能大时淋雨量达到最小。假设你以6米/秒的速度在雨中猛跑,则计算得情形3此时,雨滴将从后面向你身上落下。第36页,课件共63页,创作于2023年2月出现这个矛盾的原因:我们给出的基本模型是针对雨从你的前面落到身上情形。因此,对于这种情况要另行讨论。当行走速度慢于雨滴的水平运动速度,即这时,雨滴将淋在背上,而淋在背上的雨水量是淋雨总量为第37页,课件共63页,创作于2023年2月再次代如数据,得结果表明:当行走速度等于雨滴下落的水平速度时,淋雨量最小,仅仅被头顶上的雨水淋湿了。若雨滴是以的角度落下,即雨滴以的角从背后落下,你应该以此时,淋雨总量为这意味着你刚好跟着雨滴前进,前后都没淋雨。第38页,课件共63页,创作于2023年2月当行走速度快于雨滴的水平运动速度,即你不断地追赶雨滴,雨水将淋湿你的前胸。被淋得雨量是淋雨总量为若雨是迎着你前进的方向向你落下,这时的策略很简单,应以最大的速度向前跑;若雨是从你的背后落下,你应控制你在雨中的行走速度,让它刚好等于落雨速度的水平分量。第39页,课件共63页,创作于2023年2月问题甲有物品X,乙有物品Y,双方为满足更高的需要,商定相互交换一部分。研究实物交换方案。yxp.用x,y分别表示甲(乙)占有X,Y的数量。设交换前甲占有X的数量为x0,乙占有Y的数量为y0,作图:若不考虑双方对X,Y的偏爱,则矩形内任一点p(x,y)都是一种交换方案:甲占有(x,y),乙占有(x0-x,y0-y)xyyo0xo••2实物交换第40页,课件共63页,创作于2023年2月xyyoy1y20x1x2xop1p2..甲的无差别曲线分析与建模如果甲占有(x1,y1)与占有(x2,y2)具有同样的满意程度,即p1,p2对甲是无差别的,MN将所有与p1,p2无差别的点连接起来,得到一条无差别曲线MN,线上各点的满意度相同,线的形状反映对X,Y的偏爱程度,N1M1p3(x3,y3).比MN各点满意度更高的点如p3,在另一条无差别曲线M1N1上。于是形成一族无差别曲线(无数条)。第41页,课件共63页,创作于2023年2月p1.p2.c1y0xf(x,y)=c1无差别曲线族的性质:单调减(x增加,y减小)下凸(凸向原点)互不相交在p1点占有x少、y多,宁愿以较多的y换取较少的x;在p2点占有y少、x多,就要以较多的
x换取较少的y。甲的无差别曲线族记作f(x,y)=c1c1~满意度(f~等满意度曲线)第42页,课件共63页,创作于2023年2月xyOg(x,y)=c2c2乙的无差别曲线族g(x,y)=c2具有相同性质(形状可以不同)双方的交换路径xyyoOxof=c1O‘x’y’g=c2乙的无差别曲线族g=c2
(坐标系x’O’y’,且反向)甲的无差别曲线族f=c1ABp
P’
双方满意的交换方案必在AB(交换路径)上因为在AB外的任一点p’,(双方)满意度低于AB上的点p两族曲线切点连线记作AB第43页,课件共63页,创作于2023年2月ABp交换方案的进一步确定交换方案~交换后甲的占有量(x,y)0xx0,0yy0矩形内任一点交换路径AB双方的无差别曲线族等价交换原则X,Y用货币衡量其价值,设交换前x0,y0价值相同,则等价交换原则下交换路径为CD(x0,0),(0,y0)两点的连线CDAB与CD的交点p设X单价a,Y单价b,则等价交换下ax+by=s(s=ax0+by0)yyo0xo..x第44页,课件共63页,创作于2023年2月美国的某些司机培训课程中的驾驶规则:背景与问题正常驾驶条件下,车速每增10英里/小时,后面与前车的距离应增一个车身的长度。实现这个规则的简便办法是“2秒准则”:后车司机从前车经过某一标志开始默数
2秒钟后到达同一标志,而不管车速如何判断“2秒准则”与“车身”规则是否一样;建立数学模型,寻求更好的驾驶规则。3汽车刹车距离第45页,课件共63页,创作于2023年2月问题分析常识:刹车距离与车速有关10英里/小时(16公里/小时)车速下2秒钟行驶29英尺(9米)>>车身的平均长度15英尺(=4.6米)“2秒准则”与“10英里/小时加一车身”规则不同刹车距离反应时间司机状况制动系统灵活性制动器作用力、车重、车速、道路、气候……最大制动力与车质量成正比,使汽车作匀减速运动。车速常数反应距离制动距离常数第46页,课件共63页,创作于2023年2月假设与建模1.刹车距离d等于反应距离d1与制动距离d2之和2.反应距离d1与车速v成正比3.刹车时使用最大制动力F,F作功等于汽车动能的改变;Fd2=mv2/2F
mt1为反应时间且F与车的质量m成正比第47页,课件共63页,创作于2023年2月反应时间t1的经验估计值为0.75秒参数估计利用交通部门提供的一组实际数据拟合k模型最小二乘法k=0.06计算刹车距离、刹车时间车速(英里/小时)(英尺/秒)实际刹车距离(英尺)计算刹车距离(英尺)刹车时间(秒)2029.342(44)39.01.53044.073.5(78)76.61.84058.7116(124)126.22.15073.3173(186)187.82.56088.0248(268)261.43.070102.7343(372)347.13.680117.3464(506)444.84.3第48页,课件共63页,创作于2023年2月“2秒准则”应修正为“t秒准则”模型车速(英里/小时)刹车时间(秒)201.5301.8402.1502.5603.0703.6804.3车速(英里/小时)0~1010~4040~6060~80t(秒)1234第49页,课件共63页,创作于2023年2月系别学生比例20席的分配人数(%)比例结果甲10351.5
乙6331.5
丙3417.0总和200100.020.02021席的分配比例结果10.8156.6153.57021.00021问题三个系学生共200名(甲系100,乙系60,丙系40),代表会议共20席,按比例分配,三个系分别为10,6,4席。现因学生转系,三系人数为103,63,34,问20席如何分配。若增加为21席,又如何分配。比例加惯例对丙系公平吗系别学生比例20席的分配人数(%)比例结果甲10351.510.3
乙6331.56.3
丙3417.03.4总和200100.020.020系别学生比例20席的分配人数(%)比例结果甲10351.510.310
乙6331.56.36
丙3417.03.44总和200100.020.02021席的分配比例结果10.815116.61573.570321.000214公平的席位分配第50页,课件共63页,创作于2023年2月“公平”分配方法衡量公平分配的数量指标人数席位A方p1
n1B方p2n2当p1/n1=p2/n2时,分配公平
p1/n1–p2/n2~对A的绝对不公平度p1=150,n1=10,p1/n1=15p2=100,n2=10,p2/n2=10p1=1050,n1=10,p1/n1=105p2=1000,n2=10,p2/n2=100p1/n1–p2/n2=5但后者对A的不公平程度已大大降低!虽二者的绝对不公平度相同若p1/n1>p2/n2,对不公平A
p1/n1–p2/n2=5第51页,课件共63页,创作于2023年2月公平分配方案应使rA
,rB
尽量小设A,B已分别有n1,n2席,若增加1席,问应分给A,还是B不妨设分配开始时p1/n1>p2/n2,即对A不公平~对A的相对不公平度将绝对度量改为相对度量类似地定义rB(n1,n2)将一次性的席位分配转化为动态的席位分配,即“公平”分配方法若p1/n1>p2/n2,定义第52页,课件共63页,创作于2023年2月1)若p1/(n1+1)>p2/n2
,则这席应给A2)若p1/(n1+1)<p2/n2
,3)若p1/n1>p2/(n2+1),应计算rB(n1+1,n2)应计算rA(n1,n2+1)若rB(n1+1,n2)<rA(n1,n2+1),则这席应给应讨论以下几种情况初始p1/n1>p2/n2
问:p1/n1<p2/(n2+1)
是否会出现?A否!若rB(n1+1,n2)>rA(n1,n2+1),则这席应给B第53页,课件共63页,创作于2023年2月当rB(n1+1,n2)<rA(n1,n2+1),该席给ArA,rB的定义该席给A否则,该席给B定义该席给Q值较大的一方推广到m方分配席位该席给Q值最大的一方Q值方法计算,第54页,课件共63页,创作于2023年2月三系用Q值方法重新分配21个席位按人数比例的整数部分已将19席分配完毕甲系:p1=103,n1=10乙系:p2=63,n2=6丙系:p3=34,n3=3用Q值方法分配第20席和第21席第20席第21席同上Q3最大,第21席给丙系甲系11席,乙系6席,丙系4席Q值方法分配结果公平吗?Q1最大,第20席给甲系第55页,课件共63页,创作于2023年2月构造数学模型,说明为什么不能用一级火箭而必须用多级火箭来发射人造卫星?为什么一般都采用三级火箭系统?1、为什么不能用一级火箭发射人造卫星?
(1)卫星能在轨道上运动的最低速度假设:(i)卫星轨道为过地球中心的某一平面上的圆,卫星在此轨道上作匀速圆周运动。(ii)地球是固定于空间中的均匀球体,其它星球对卫星的引力忽略不计。分析:根据牛顿第三定律,地球对卫星的引力为:在地面有:得:k=gR2
R为地球半径,约为6400公里故引力:假设(ii)5为什么要用三级火箭发射人造卫星第56页,课件共63页,创作于2023年2月dmm-dmvu-v假设(i)卫星所受到的引力也就是它作匀速圆周运动的向心力故又有:从而:设g=9.81米/秒2,得:
卫星离地面高度
(公里)卫星速度
(公里/秒)10020040060080010007.807.697.587.477.377.86(2)火箭推进力及速度的分析假设:火箭重力及空气阻力均不计分析:记火箭在时刻t的质量和速度分别为m(t)和υ(t)有:记火箭喷出的气体相对于火箭的速度为u(常数),由动量守恒定理:υ0和m0一定的情况下,火箭速度υ(t)由喷发速度u及质量比决定。
故:由此解得:(3.11)
第57页,课件共63页,创作于2023年2月(2)火箭推进力及速度的分析现将火箭——卫星系统的质量分成三部分:(i)mP(有效负载,如卫星)(ii)mF(燃料质量)(iii)mS(结构质量——如外壳、燃料容器及推进器)。最终质量为mP+mS
,初始速度为0,所以末速度:根据目前的技术条件和燃料性能,u只能达到3公里/秒,即使发射空壳火箭,其末速度也不超过6.6公里/秒。目前根本不可能用一级火箭发射人造卫星火箭推进力在加速整个火箭时,其实际效益越来越低。如果将结构质量在燃料燃烧过程中不断减少,那么末速度能达到要求吗?第58页,课件共63页,创作于2023年2月2、理想火箭模型假设:记结构质量mS在mS+mF中占的比例为λ,假设火箭理想地好,它能随时抛弃无用的结构,即结构质量与燃料质量以λ与(1-λ)的比例同时减少。建模:
由
得到:解得:
理想火箭与一级火箭最大的区别在于,当火箭燃料耗尽时,结构质量也逐渐抛尽,它的最终质量为mP,所以最终速度为:
只要m0足够大,我们可以使卫星达到我们希望它具有的任意速度。考虑到空气阻力和重力等因素,估计(按比例的粗略估计)发射卫星要使υ=10.5公里/秒才行,则可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025写字楼办公楼场地租赁合同范例
- 灯具外观报告范文
- 2025“锦鸿山庄”前期物业服务合同
- 课题申报书:高中化学实验教学的现状调查与策略研究
- 课题申报书:高质量发展背景下县域高校多元主体协同治理研究
- 课题申报书:高校县域办学与中国式县域现代化融合共生的路径研究
- 2025个人建筑装修合同
- 课题申报书:非线性预测回归模型:理论与应用
- 上海杉达学院《羽毛球俱乐部(初级)》2023-2024学年第一学期期末试卷
- 上海杉达学院《数据可视化技术》2023-2024学年第一学期期末试卷
- 创新、发明与专利实务学习通超星期末考试答案章节答案2024年
- 2024新人教版道法一年级上册第三单元:养成良好习惯大单元整体课时教学设计
- 大学英语三级(A级)模拟试卷12(共668题)
- 机电安装行业危险源因素识别清单
- 儿牙口腔知识科普(小牙医课堂)
- 2024年政府补贴协议书
- 《Photoshop CC图形图像处理实例教程》全套教学课件
- 公共租赁住房运行管理标准
- 2024-2030年中国永磁耦合器行业经营优势及竞争对手现状调研报告
- JJ∕G(交通) 200-2024 轮碾成型机
- 小学科学教科版五年级上册全册易错知识点专项练习(判断选择-分单元编排-附参考答案和点拨)
评论
0/150
提交评论