




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学规划模型第1页,课件共29页,创作于2023年2月第四章数学规划模型
4.1奶制品的生产与销售4.2
自来水输送与货机装运4.3
汽车生产与原油采购4.4
接力队选拔和选课策略4.5
饮料厂的生产与检修4.6钢管和易拉罐下料y第2页,课件共29页,创作于2023年2月数学规划模型
实际问题中的优化模型x~决策变量f(x)~目标函数gi(x)0~约束条件多元函数条件极值决策变量个数n和约束条件个数m较大最优解在可行域的边界上取得数学规划线性规划非线性规划整数规划重点在模型的建立和结果的分析第3页,课件共29页,创作于2023年2月企业生产计划4.1奶制品的生产与销售
空间层次工厂级:根据外部需求和内部设备、人力、原料等条件,以最大利润为目标制订产品生产计划;车间级:根据生产计划、工艺流程、资源约束及费用参数等,以最小成本为目标制订生产批量计划。时间层次若短时间内外部需求和内部资源等不随时间变化,可制订单阶段生产计划,否则应制订多阶段生产计划。本节课题第4页,课件共29页,创作于2023年2月例1加工奶制品的生产计划1桶牛奶3公斤A1
12小时8小时4公斤A2
或获利24元/公斤获利16元/公斤50桶牛奶时间480小时至多加工100公斤A1
制订生产计划,使每天获利最大
35元可买到1桶牛奶,买吗?若买,每天最多买多少?可聘用临时工人,付出的工资最多是每小时几元?
A1的获利增加到30元/公斤,应否改变生产计划?每天:第5页,课件共29页,创作于2023年2月1桶牛奶3公斤A1
12小时8小时4公斤A2
或获利24元/公斤获利16元/公斤x1桶牛奶生产A1
x2桶牛奶生产A2
获利24×3x1
获利16×4x2
原料供应
劳动时间
加工能力
决策变量
目标函数
每天获利约束条件非负约束
线性规划模型(LP)时间480小时至多加工100公斤A1
50桶牛奶每天第6页,课件共29页,创作于2023年2月模型分析与假设
比例性可加性连续性xi对目标函数的“贡献”与xi取值成正比xi对约束条件的“贡献”与xi取值成正比xi对目标函数的“贡献”与xj取值无关xi对约束条件的“贡献”与xj取值无关xi取值连续A1,A2每公斤的获利是与各自产量无关的常数每桶牛奶加工出A1,A2的数量和时间是与各自产量无关的常数A1,A2每公斤的获利是与相互产量无关的常数每桶牛奶加工出A1,A2的数量和时间是与相互产量无关的常数加工A1,A2的牛奶桶数是实数线性规划模型第7页,课件共29页,创作于2023年2月模型求解
图解法
x1x20ABCDl1l2l3l4l5约束条件目标函数
Z=0Z=2400Z=3360z=c(常数)~等值线c在B(20,30)点得到最优解目标函数和约束条件是线性函数可行域为直线段围成的凸多边形目标函数的等值线为直线最优解一定在凸多边形的某个顶点取得。第8页,课件共29页,创作于2023年2月模型求解
软件实现
LINDO6.1max72x1+64x2st2)x1+x2<503)12x1+8x2<4804)3x1<100end
OBJECTIVEFUNCTIONVALUE
1)3360.000
VARIABLEVALUEREDUCEDCOST
X120.0000000.000000
X230.0000000.000000ROWSLACKORSURPLUSDUALPRICES2)0.00000048.0000003)0.0000002.0000004)40.0000000.000000NO.ITERATIONS=2DORANGE(SENSITIVITY)ANALYSIS?No20桶牛奶生产A1,30桶生产A2,利润3360元。第9页,课件共29页,创作于2023年2月结果解释
OBJECTIVEFUNCTIONVALUE1)3360.000VARIABLEVALUEREDUCEDCOSTX120.0000000.000000X230.0000000.000000
ROW
SLACKORSURPLUSDUALPRICES
2)0.00000048.000000
3)0.0000002.0000004)40.0000000.000000NO.ITERATIONS=2原料无剩余时间无剩余加工能力剩余40max72x1+64x2st2)x1+x2<503)12x1+8x2<4804)3x1<100end三种资源“资源”剩余为零的约束为紧约束(有效约束)第10页,课件共29页,创作于2023年2月结果解释
OBJECTIVEFUNCTIONVALUE1)3360.000VARIABLEVALUEREDUCEDCOSTX120.0000000.000000X230.0000000.000000ROWSLACKORSURPLUSDUALPRICES
2)0.00000048.000000
3)0.0000002.000000
4)40.0000000.000000NO.ITERATIONS=2最优解下“资源”增加1单位时“效益”的增量原料增加1单位,利润增长48时间增加1单位,利润增长2加工能力增长不影响利润影子价格
35元可买到1桶牛奶,要买吗?35<48,应该买!聘用临时工人付出的工资最多每小时几元?2元!第11页,课件共29页,创作于2023年2月RANGESINWHICHTHEBASISISUNCHANGED:
OBJCOEFFICIENTRANGES
VARIABLECURRENTALLOWABLEALLOWABLECOEFINCREASEDECREASE
X172.00000024.0000008.000000X264.0000008.00000016.000000RIGHTHANDSIDERANGESROWCURRENTALLOWABLEALLOWABLERHSINCREASEDECREASE250.00000010.0000006.6666673480.00000053.33333280.0000004100.000000INFINITY40.000000最优解不变时目标函数系数允许变化范围DORANGE(SENSITIVITY)ANALYSIS?
Yesx1系数范围(64,96)
x2系数范围(48,72)
A1获利增加到30元/千克,应否改变生产计划x1系数由243=72增加为303=90,在允许范围内不变!(约束条件不变)第12页,课件共29页,创作于2023年2月结果解释
RANGESINWHICHTHEBASISISUNCHANGED:OBJCOEFFICIENTRANGESVARIABLECURRENTALLOWABLEALLOWABLECOEFINCREASEDECREASEX172.00000024.0000008.000000X264.0000008.00000016.000000
RIGHTHANDSIDERANGESROWCURRENTALLOWABLEALLOWABLERHSINCREASEDECREASE250.00000010.0000006.6666673480.00000053.33333280.0000004100.000000INFINITY40.000000影子价格有意义时约束右端的允许变化范围原料最多增加10时间最多增加53
35元可买到1桶牛奶,每天最多买多少?最多买10桶!(目标函数不变)第13页,课件共29页,创作于2023年2月例2奶制品的生产销售计划
在例1基础上深加工1桶牛奶3千克A1
12小时8小时4公斤A2
或获利24元/公斤获利16元/公斤0.8千克B12小时,3元1千克获利44元/千克0.75千克B22小时,3元1千克获利32元/千克制订生产计划,使每天净利润最大
30元可增加1桶牛奶,3元可增加1小时时间,应否投资?现投资150元,可赚回多少?50桶牛奶,480小时至多100公斤A1
B1,B2的获利经常有10%的波动,对计划有无影响?第14页,课件共29页,创作于2023年2月1桶牛奶
3千克A1
12小时8小时4千克A2
或获利24元/千克获利16元/kg
0.8千克
B12小时,3元1千克获利44元/千克0.75千克B22小时,3元1千克获利32元/千克出售x1千克A1,
x2千克A2,
X3千克B1,x4千克B2原料供应
劳动时间
加工能力
决策变量
目标函数
利润约束条件非负约束
x5千克A1加工B1,x6千克A2加工B2附加约束
第15页,课件共29页,创作于2023年2月模型求解
软件实现
LINDO6.1
OBJECTIVEFUNCTIONVALUE1)3460.800VARIABLEVALUEREDUCEDCOSTX10.0000001.680000X2168.0000000.000000X319.2000010.000000X40.0000000.000000X524.0000000.000000X60.0000001.520000ROWSLACKORSURPLUSDUALPRICES2)0.0000003.1600003)0.0000003.2600004)76.0000000.0000005)0.00000044.0000006)0.00000032.000000NO.ITERATIONS=2DORANGE(SENSITIVITY)ANALYSIS?No第16页,课件共29页,创作于2023年2月
OBJECTIVEFUNCTIONVALUE1)3460.800
VARIABLEVALUEREDUCEDCOST
X10.0000001.680000
X2168.0000000.000000
X319.2000010.000000
X40.0000000.000000
X524.0000000.000000
X60.0000001.520000ROWSLACKORSURPLUSDUALPRICES2)0.0000003.1600003)0.0000003.2600004)76.0000000.0000005)0.00000044.0000006)0.00000032.000000NO.ITERATIONS=2结果解释每天销售168千克A2和19.2千克B1,利润3460.8(元)8桶牛奶加工成A1,42桶牛奶加工成A2,将得到的24千克A1全部加工成B1
除加工能力外均为紧约束第17页,课件共29页,创作于2023年2月结果解释
OBJECTIVEFUNCTIONVALUE1)3460.800VARIABLEVALUEREDUCEDCOSTX10.0000001.680000X2168.0000000.000000X319.2000010.000000X40.0000000.000000X524.0000000.000000X60.0000001.520000ROWSLACKORSURPLUSDUALPRICES2)0.0000003.1600003)0.0000003.2600004)76.0000000.0000005)0.00000044.0000006)0.00000032.000000增加1桶牛奶使利润增长3.16×12=37.92增加1小时时间使利润增长3.2630元可增加1桶牛奶,3元可增加1小时时间,应否投资?现投资150元,可赚回多少?投资150元增加5桶牛奶,可赚回189.6元。(大于增加时间的利润增长)第18页,课件共29页,创作于2023年2月结果解释B1,B2的获利有10%的波动,对计划有无影响
RANGESINWHICHTHEBASISISUNCHANGED:OBJCOEFFICIENTRANGESVARIABLECURRENTALLOWABLEALLOWABLECOEFINCREASEDECREASEX124.0000001.680000INFINITYX216.0000008.1500002.100000
X344.00000019.7500023.166667X432.0000002.026667INFINITYX5-3.00000015.8000002.533334X6-3.0000001.520000INFINITY
…………DORANGE(SENSITIVITY)ANALYSIS?YesB1获利下降10%,超出X3系数允许范围B2获利上升10%,超出X4系数允许范围波动对计划有影响生产计划应重新制订:如将x3的系数改为39.6计算,会发现结果有很大变化。第19页,课件共29页,创作于2023年2月生产中通过切割、剪裁、冲压等手段,将原材料加工成所需大小§6钢管和易拉罐下料原料下料问题按照工艺要求,确定下料方案,使所用材料最省,或利润最大第20页,课件共29页,创作于2023年2月问题1.如何下料最节省?例1
钢管下料问题2.客户增加需求:原料钢管:每根19米4米50根6米20根8米15根客户需求节省的标准是什么?由于采用不同切割模式太多,会增加生产和管理成本,规定切割模式不能超过3种。如何下料最节省?5米10根第21页,课件共29页,创作于2023年2月按照客户需要在一根原料钢管上安排切割的一种组合。
切割模式余料1米4米1根6米1根8米1根余料3米4米1根6米1根6米1根合理切割模式的余料应小于客户需要钢管的最小尺寸余料3米8米1根8米1根钢管下料第22页,课件共29页,创作于2023年2月为满足客户需要,按照哪些种合理模式,每种模式切割多少根原料钢管,最为节省?合理切割模式2.所用原料钢管总根数最少模式
4米钢管根数6米钢管根数8米钢管根数余料(米)14003231013201341203511116030170023钢管下料问题1两种标准1.原料钢管剩余总余量最小第23页,课件共29页,创作于2023年2月xi~按第i种模式切割的原料钢管根数(i=1,2,…7)约束满足需求决策变量
目标1(总余量)按模式2切割12根,按模式5切割15根,余料27米
模式4米根数6米根数8米根数余料14003231013201341203511116030170023需求502015最优解:x2=12,x5=15,
其余为0;最优值:27。整数约束:xi为整数第24页,课件共29页,创作于2023年2月当余料没有用处时,通常以总根数最少为目标目标2(总根数)钢管下料问题1约束条件不变最优解:x2=15,x5=5,x7=5,其余为0;最优值:25。xi为整数按模式2切割15根,按模式5切割5根,按模式7切割5根,共25根,余料35米虽余料增加8米,但减少了2根与目标1的结果“共切割27根,余料27米”相比第25页,课件共29页,创作于2023年2月钢管下料问题2对大规模问题,用模型的约束条件界定合理模式增加一种需求:5米10根;切割模式不超过3种。现有4种需求:4米50根,5米10根,6米20根,8米15根,用枚举法确定合理切割模式,过于复杂。决策变量
xi~按第i种模式切割的原料钢管根数(i=1,2,3)r1i,r2i,r3i,r4i~第i种切割模式下,每根原料钢管生产4米、5米、6米和8米长的钢管的数量第26页,课件共29页,创作于2023年2月满足需求模式合理:每根余料不超过3米整数非线性规划模型钢管下料问题2目标函数(总根数)约束条件整数约束:xi,r1i,r2i,r3i,r4i(i=1,2,3)为整数第27页,课件共29页,创作于2023年2月增加约束,缩小可行域,便于求解原料钢管总根数下界:
特殊生产计划:对每根原料钢管模式1:切割成4根4米钢管,需13根;模式2:切割成1根5米和2根6米钢管,需10根;模式3:切割成2根8米钢管,需8根。原料钢管总根数上界:13+10+8=31模式排列顺序
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 乳品安全监管体系构建考核试卷
- 教育文具在远程教育中的应用考核试卷
- 乐器批发商的品牌市场渠道开发考核试卷
- 家用换气扇产业链协同创新发展模式与实践考核试卷
- 城市轨道交通的非折返运行与列车调度考核试卷
- 办公自动化软件综合应用考核试卷
- 丝印染在体育用品上的独特应用考核试卷
- 智能设备多模态交互设计考核试卷
- 工伤案例培训课件
- 快手代运营合同范本
- 上海市中小学生学业质量绿色指标问卷调查-小学生问卷-I
- 高校电子课件:现代管理学基础(第三版)
- 小企业会计实务全书ppt完整版课件整本书电子教案最全教学教程
- (完整word版)服务质量评价表
- 肠瘘治疗PPT医学课件(PPT 25页)
- 员工转正评价表
- 道路交通事故责任认定行政复议申请书范例
- 郑州大学图书馆平立剖面效果图
- 高效液相含量测定计算公式
- 公安机关通用告知书模板
- 《小学数学课程与教学》教学大纲
评论
0/150
提交评论