版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省衡阳市谢第一中学高二数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图,在复平面内,点A表示复数z,则图中表示z的共轭复数的点是()A.AB.BC.CD.D参考答案:B2.函数的定义域为(),值域为,则的最小值为
参考答案:C3.已知的左、右焦点,是椭圆上位于第一象限内的一点,点也在椭圆上,且满足(为坐标原点),,若椭圆的离心率等于,则直线的方程是(
)A.
B.
C.
D.参考答案:A略4.已知某厂的产品合格率为90%,现抽出10件产品检查,则下列说法正确的(
)A、合格产品少于9件
B、合格产品多于9件C、合格产品正好是9件
D、合格产品可能是9件参考答案:D5.读如图21-3所示的程序框图,若输入p=5,q=6,则输出a,i的值分别为()图21-3A.a=5,i=1
B.a=5,i=2C.a=15,i=3
D.a=30,i=6参考答案:D6.“a=-1”是方程“a2x2+(a+2)y2+2ax+a=0”表示圆的()A.充分非必要条件
B.必要非充分条件
C.充要条件D.既非充分也非必要条件参考答案:C7.如果直线与平行,则(
)A.
B.
C.
D.参考答案:C略8.已知向量,且,则的值为(
)A.-4 B.-2 C.2 D.4参考答案:A【分析】向量=(-1,x,3),=(2,-4,y)且∥,所以存在k,使得=k,利用坐标列方程组求解即可.【详解】向量=(-1,x,3),=(2,-4,y)且∥,所以存在k,使得=k则,解得所以x+y=-4.故选A.9.在命题“若,则”的逆命题、否命题、逆否命题中,真命题的个数为(
)A.
B.
C.
D.参考答案:C10.命题“若”的逆否命题是()A.若
B.若
C.若则
D.若参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.如图,平面中两条直线l1和l2相交于点O,对于平面上任意一点M,若x,y分别是M到直线l1和l2的距离,则称有序非负实数对(x,y)是点M的“距离坐标”。已知常数p≥0,q≥0,给出下列三个命题:①若p=q=0,则“距离坐标”为(0,0)的点有且只有1个;②若pq=0,且p+q≠0,则“距离坐标”为(p,q)的点有且只有2个;③若pq≠0则“距离坐标”为(p,q)的点有且只有4个.上述命题中,正确命题的是
.
(写出所有正确命题的序号)参考答案:①③略12.设函数,若对于任意的都有成立,则实数a的值为
.参考答案:013.椭圆+=1的右顶点到它的左焦点的距离为
.参考答案:20【考点】椭圆的简单性质.【专题】数形结合;数学模型法;圆锥曲线的定义、性质与方程.【分析】椭圆+=1可得:a=12,b2=80,.即可得出右顶点,左焦点.【解答】解:椭圆+=1可得:a=12,b2=80,=8.右顶点(12,0)到它的左焦点(﹣8,0)的距离d=12﹣(﹣8)=20.故答案为:20.【点评】本题考查了椭圆的标准方程及其性质,考查了推理能力与计算能力,属于中档题.14.已知平行六面体中,则
参考答案:略15.中,已知,则
.参考答案:16.判断,,的大小关系为________.参考答案:.【分析】利用微积分基本定理求出、、的值,然后可得出、、三个数的大小关系.【详解】由微积分基本定理得,,,因此,,故答案为:.【点睛】本题考查同一区间上的三个积分的大小比较,常用的方法有两种:一是将各积分全部计算出来,利用积分值来得出大小关系;二是比较三个函数在区间上的大小关系,可得出三个积分的大小关系.17.若函数满足,则___________.参考答案:-1试题分析:在关系式中,用代换掉得,两式构成方程组,解方程组可得.考点:函数的解析式及函数值的运算.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.△ABC的三个内角A,B,C所对的边分别为a,b,c,asinAsinB+=a.(1)求;(2)若c2=b2+a2,求B.参考答案:(1)由正弦定理得,sin2AsinB+sinBcos2A=sinA,---------2即sinB(sin2A+cos2A)=sinA.故sinB=sinA,------------------4所以=.----------------------6(2)由余弦定理和c2=b2+a2,得cosB=.-----------------8由(1)知b2=2a2,故c2=(2+)a2.可得cos2B=,又cosB>0,-------------------10故cosB=,所以B=45°.-----------------1219.某校高一数学兴趣小组开展竞赛前摸底考试.甲、乙两人参加了5次考试,成绩如下:
第一次第二次第三次第四次第五次甲的成绩8287868090乙的成绩7590917495(Ⅰ)若从甲、乙两人中选出1人参加比赛,你认为选谁合适?写出你认为合适的人选并说明理由;(Ⅱ)若同一次考试成绩之差的绝对值不超过5分,则称该次考试两人“水平相当”.由上述5次摸底考试成绩统计,任意抽查两次摸底考试,求恰有一次摸底考试两人“水平相当”的概率.参考答案:【考点】极差、方差与标准差.【专题】概率与统计.【分析】(Ⅰ)解法一:求出,答案一:从稳定性角度选甲合适.(注:按(Ⅱ)看分数的标准,5次考试,甲三次与乙相当,两次优于乙,所以选甲合适.答案二:通过乙的成绩波动大,有爆发力,选乙合适.)解法二:求出甲摸底考试成绩不低于90的概率,乙摸底考试成绩不低于90的概率,然后决定选谁合适.(Ⅱ)依题意知5次摸底考试,“水平相当”考试是第二次,第三次,第五次,记为A,B,C.“水平不相当”考试是第一次,第四次,记为a,b.列出这5次摸底考试中任意选取2次所有情况.恰有一次摸底考试两人“水平相当”的情况个数然后求出概率.【解答】解:(Ⅰ)解法一:依题意有,答案一:∵∴从稳定性角度选甲合适.(注:按(Ⅱ)看分数的标准,5次考试,甲三次与乙相当,两次优于乙,所以选甲合适.答案二:∵乙的成绩波动大,有爆发力,选乙合适.解法二:因为甲5次摸底考试成绩中只有1次90,甲摸底考试成绩不低于90的概率为;乙5次摸底考试成绩中有3次不低于90,乙摸底考试成绩不低于90的概率为.所以选乙合适.(Ⅱ)依题意知5次摸底考试,“水平相当”考试是第二次,第三次,第五次,记为A,B,C.“水平不相当”考试是第一次,第四次,记为a,b.从这5次摸底考试中任意选取2次有ab,aA,aB,aC,bA,bB,bC,AB,AC,BC共10种情况.恰有一次摸底考试两人“水平相当”包括共aA,aB,aC,bA,bB,bC共6种情况.∴5次摸底考试成绩统计,任意抽查两次摸底考试,恰有一次摸底考试两人“水平相当”概率.【点评】本题主要考查平均数,方差,概率等基础知识,运算数据处理能力、运算求解能力、应用意识,考查化归转化思想、或然与必然思想.20.在△ABC中,角A,B,C的对边分别为,,(1)求sinC的值;(2)求△ABC的面积.参考答案:(1).........6分(2)由正弦定理得.............................12分21.已知△的两个顶点的坐标分别是,,且所在直线的斜率之积等于. (1)求顶点的轨迹的方程,并判断轨迹为何种圆锥曲线;(2)当时,过点的直线交曲线于两点,设点关于轴的对称点为(不重合),试问:直线与轴的交点是否是定点?若是,求出定点,若不是,请说明理由.参考答案:(1)由题知:
化简得:……………2分当时轨迹表示焦点在轴上的椭圆,且除去两点;当时轨迹表示以为圆心半径是1的圆,且除去两点;当时
轨迹表示焦点在轴上的椭圆,且除去两点;当时
轨迹表示焦点在轴上的双曲线,且除去两点;…6分(2)设依题直线的斜率存在且不为零,则可设:,代入整理得,,………9分又因为不重合,则的方程为令,得故直线过定点.………………14分解二:设依题直线的斜率存在且不为零,可设:代入整理得:,,…………………9分的方程为
令,得直线过定点………………14分
略22.(本小题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度绿色能源项目投资定金合同附属协议书2篇
- 二零二五年度权威解读!欠条法律风险防范及处理合同3篇
- 二零二五年度白酒定制生产与品牌发展合同2篇
- 二零二五年度高铁安装工程设备磨损保险合同2篇
- 2025年度西餐厅经营管理权租赁合同3篇
- 二零二五年度航空货运代理航空货物包装材料供应合同3篇
- 展会展台拆除合同(2篇)
- 小区道路工程承包合同(2篇)
- 2025年餐饮食材配送与售后服务合同协议3篇
- 二零二五年度航空航天零部件耗材采购合同范本3篇
- 幼儿园反恐防暴技能培训内容
- 食品企业质检员聘用合同
- 中医诊所内外部审计制度
- 自然辩证法学习通超星期末考试答案章节答案2024年
- 2024年国家危险化学品经营单位安全生产考试题库(含答案)
- 护理员技能培训课件
- 家庭年度盘点模板
- 河南省郑州市2023-2024学年高二上学期期末考试 数学 含答案
- 2024年资格考试-WSET二级认证考试近5年真题集锦(频考类试题)带答案
- 试卷中国电子学会青少年软件编程等级考试标准python三级练习
- 公益慈善机构数字化转型行业三年发展洞察报告
评论
0/150
提交评论