2022-2023学年吉林省白城市一中数学高二第二学期期末综合测试模拟试题含解析_第1页
2022-2023学年吉林省白城市一中数学高二第二学期期末综合测试模拟试题含解析_第2页
2022-2023学年吉林省白城市一中数学高二第二学期期末综合测试模拟试题含解析_第3页
2022-2023学年吉林省白城市一中数学高二第二学期期末综合测试模拟试题含解析_第4页
2022-2023学年吉林省白城市一中数学高二第二学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.执行下面的程序框图,如果输入的,那么输出的()A. B.C. D.2.已知数列的前n项和为,满足,,若,则m的最小值为()A.6 B.7 C.8 D.93.下列四个命题中,其中错误的个数是()①经过球面上任意两点,可以作且只可以作一个大圆;②经过球直径的三等分点,作垂直于该直径的两个平面,则这两个平面把球面分成三部分的面积相等;③球的面积是它大圆面积的四倍;④球面上两点的球面距离,是这两点所在截面圆上,以这两点为端点的劣弧的长.A.0 B.1 C.2 D.34.从5名学生中选出4名分别参加数学,物理,化学,生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为A.48 B.72 C.90 D.965.已知复数满足,则的共轭复数为()A. B. C. D.6.设函数在区间上有两个极值点,则的取值范围是A. B. C. D.7.某班准备从甲、乙、丙等6人中选出4人参加某项活动,要求甲、乙、丙三人中至少有两人参加,那么不同的方法有()A.18种 B.12种 C.432种 D.288种8.的展开式的各项系数之和为3,则该展开式中项的系数为()A.2 B.8 C. D.-179.设,,则“”是“”的()A.充要条件 B.充分而不必要条件 C.必要而不充分条件 D.既不充分也不必要条件10.点M的极坐标(4,A.(4,π3) B.(411.已知是离散型随机变量,,,,则()A. B. C. D.12.若,且,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设一个回归方程为,则当时,的估计值是_______.14.设,若随机变量的分布列是:012则当变化时,的极大值是__________.15.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件.再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件.给出下列结论:①P(B)25;②P(B|A1)511;③事件B与事件A1相互独立;④A1,A2,A3是两两互斥的事件;⑤P(B)的值不能确定,因为它与A1,A2,A3中究竟哪一个发生有关;其中正确的有()②④①③②④⑤②③④⑤16.在长方体中,,,则直线与平面所成角的正弦值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数f(x)=,求函数f(x)的单调区间.18.(12分)设事件A表示“关于的一元二次方程有实根”,其中,为实常数.(Ⅰ)若为区间[0,5]上的整数值随机数,为区间[0,2]上的整数值随机数,求事件A发生的概率;(Ⅱ)若为区间[0,5]上的均匀随机数,为区间[0,2]上的均匀随机数,求事件A发生的概率.19.(12分)新高考方案的考试科目简称“”,“3”是指统考科目语数外,“1”指在首选科目“物理、历史”中任选1门,“2”指在再选科目“化学、生物、政治和地理”中任选2门组成每位同学的6门高考科目.假设学生在选科中,选修每门首选科目的机会均等,选择每门再选科目的机会相等.(Ⅰ)求某同学选修“物理、化学和生物”的概率;(Ⅱ)若选科完毕后的某次“会考”中,甲同学通过首选科目的概率是,通过每门再选科目的概率都是,且各门课程通过与否相互独立.用表示该同学所选的3门课程在这次“会考”中通过的门数,求随机变量的概率分布和数学期望.20.(12分)设函数的定义域为集合,集合,(1)若,求;(2)若,求.21.(12分)已知函数,.(1)若函数的图象与直线相切,求实数的值;(2)设函数在区间内有两个极值点.(ⅰ)求实数的取值范围;(ⅱ)若恒成立,求实数的取值范围.22.(10分)已知函数(为自然对数的底数).(1)讨论函数的单调性;(2)当时,恒成立,求整数的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】分析:由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量的值,模拟程序的运行过程,分析循环中各个变量值的变化情况,可得结论.详解:模拟程序的运行过程,分析循环中各个变量值的变化情况,可得程序的作用是求和,即,故选D.点睛:本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是中档题.算法是新课标高考的一大热点,其中算法的交汇性问题已成为高考的一大亮,这类问题常常与函数、数列、不等式等交汇自然,很好地考查考生的信息处理能力及综合运用知识解决问題的能力,解决算法的交汇性问题的方:(1)读懂程序框图、明确交汇知识,(2)根据给出问题与程序框图处理问题即可.2、C【解析】

根据an=sn﹣sn﹣1可以求出{an}的通项公式,再利用裂项相消法求出sm,最后根据已知,解出m即可.【详解】由已知可得,,,,(n≥2),1,即,解之得,或7.5,故选:C.【点睛】本题考查前n项和求通项公式以及裂项相消法求和,考查了分式不等式的解法,属于中等难度.3、C【解析】

结合球的有关概念:如球的大圆、球面积公式、球面距离等即可解决问题,对于球的大圆、球面积公式、球面距离等的含义的理解,是解决此题的关键.【详解】对于①,若两点是球的一条直径的端点,则可以作无数个球的大圆,故①错;

对于②三部分的面积都是,故②正确对于③,球面积=,是它大圆面积的四倍,故③正确;

对于④,球面上两点的球面距离,是这两点所在大圆上以这两点为端点的劣弧的长,故④错.

所以①④错误.

所以C选项是正确的.【点睛】本题考查球的性质,特别是求两点的球面距离,这两个点肯定在球面上,做一个圆使它经过这两个点,且这个圆的圆心在球心上,两点的球面距离对应的是这个圆两点之间的对应的较短的那个弧的距离.4、D【解析】因甲不参加生物竞赛,则安排甲参加另外3场比赛或甲学生不参加任何比赛①当甲参加另外3场比赛时,共有•=72种选择方案;②当甲学生不参加任何比赛时,共有=24种选择方案.综上所述,所有参赛方案有72+24=96种故答案为:96点睛:本题以选择学生参加比赛为载体,考查了分类计数原理、排列数与组合数公式等知识,属于基础题.5、A【解析】

根据复数的运算法则得,即可求得其共轭复数.【详解】由题:,所以,所以的共轭复数为.故选:A【点睛】此题考查求复数的共轭复数,关键在于准确求出复数Z,需要熟练掌握复数的运算法则,准确求解.6、D【解析】令,则在上有两个不等实根,有解,故,点晴:本题主要考查函数的单调性与极值问题,要注意转化,函数()在区间上有两个极值点,则在上有两个不等实根,所以有解,故,只需要满足解答此类问题,应该首先确定函数的定义域,注意分类讨论和数形结合思想的应用7、D【解析】

根据题意,6人中除甲乙丙之外的3人为a、b、c,分2步进行分析:①先在6人中选出4人,要求甲、乙、丙三人中至少有两人参加,②将选出的4人全排列,安排4人的顺序,由分步计数原理计算可得答案.【详解】根据题意,6人中除甲乙丙之外的3人为a、b、c,分2步进行分析:①先在6人中选出4人,要求甲、乙、丙三人中至少有两人参加,若甲、乙、丙三人都参加,在a、b、c三人中任选1人,有3种情况,若甲、乙、丙三人有2人参加,在a、b、c三人中任选1人,有=9种情况,则有3+9=12种选法;②将选出的4人全排列,安排4人的顺序,有A44=24种顺序,则不同的发言顺序有12×24=288种;故答案为:D.【点睛】(1)本题主要考查排列组合的综合应用,意在考查学生对这些知识的掌握水平和分析推理能力.(2)排列组合常见解法有:一般问题直接法、相邻问题捆绑法、不相邻问题插空法、特殊对象优先法、等概率问题缩倍法、至少问题间接法、复杂问题分类法、小数问题列举法.8、D【解析】

令得各项系数和,可求得,再由二项式定理求得的系数,注意多项式乘法法则的应用.【详解】令,可得,,在的展开式中的系数为:.故选D.【点睛】本题考查二项式定理,在二项展开式中,通过对变量适当的赋值可以求出一些特定的系数,如令可得展开式中所有项的系数和,再令可得展开式中偶数次项系数和与奇数次项系数和的差,两者结合可得奇数项系数和以及偶数项系数和.9、C【解析】不能推出,反过来,若则成立,故为必要不充分条件.10、C【解析】

在点M极径不变,在极角的基础上加上π,可得出与点M关于极点对称的点的一个极坐标。【详解】设点M关于极点的对称点为M',则OM'所以点M'的一个极坐标为(4,7π6)【点睛】本题考查点的极坐标,考查具备对称性的两点极坐标之间的关系,把握极径与极角之间的关系,是解本题的关键,属于基础题。11、A【解析】分析:由已知条件利用离散型随机变量的数学期望计算公式求出a,进而求出,由此即可求出答案.详解:是离散型随机变量,,,,由已知得,解得,,.故选:A.点睛:本题考查离散型随机变量的方差的求法,是基础题,解题时要认真审题,注意离散型随机变量的数学期望和方差计算公式的合理运用.12、D【解析】

先利用特殊值排除A,B,C,再根据组合数公式以及二项式定理论证D成立.【详解】令得,,在选择项中,令排除A,C;在选择项中,令,排除B,,故选D【点睛】本题考查组合数公式以及二项式定理应用,考查基本分析化简能力,属中档题.二、填空题:本题共4小题,每小题5分,共20分。13、8.1【解析】分析:直接利用回归方程,将代入,即可求得的估计值.详解:∵回归方程为,

∴当时,的估计值为故答案为8.1.点睛:本题考查回归方程的运用,考查学生的计算能力,属于基础题.14、.【解析】分析:先求,再根据二次函数性质求极大值.详解:因为,所以,当且仅当时取等号,因此的极大值是.点睛:本题考查数学期望公式以及方差公式:考查基本求解能力.15、②④【解析】试题解析::由题意可知A1,A2,AP(B|A3=P(A1)P(B|A1考点:相互独立事件,条件概率.【方法点晴】本题主要考查了相互独立事件,条件概率的求法等,解题的关键是理解题设中的各个事件,且熟练掌握相互独立事件的概率公式,本题较为复杂,正确理解事件的内涵是解题的突破点.解答本题的关键是在理解题意的基础上判断出A1,A2,A3是两两互斥的事件,根据条件概率公式得到P(B|A116、【解析】分析:过作,垂足为,则平面,则即为所求平面角,从而可得结果.详解:依题意,画出图形,如图,过作,垂足为,由平面,可得,所以平面,则即为所求平面角,因为,,所以,故答案为.点睛:本题考查长方体的性质,以及直线与平面所成的角,属于中档题.求直线与平面所成的角由两种方法:一是传统法,证明线面垂直找到直线与平面所成的角,利用平面几何知识解答;二是利用空间向量,求出直线的方向向量以及平面的方向向量,利用空间向量夹角余弦公式求解即可.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、单调递增区间是[1,+∞),单调递减区间是(-∞,0),(0,1]【解析】

先求出f(x)的导数f′(x),令f′(x)=0,得出零点.讨论零点两侧导数正负即可解出答案(注意定义域)【详解】解:f′(x)=-ex+ex=ex,由f′(x)=0,得x=1.因为当x<0时,f′(x)<0;当0<x<1时,f′(x)<0;当x>1时,f′(x)>0.所以f(x)的单调递增区间是[1,+∞),单调递减区间是(-∞,0),(0,1].【点睛】本题主要考察利用导数求函数单调区间,属于基础题.18、(Ⅰ);(Ⅱ).【解析】试题分析:(1)列出所有可能的事件,结合古典概型公式可得满足题意的概率值为;(2)利用题意画出概率空间,结合几何概型公式可得满足题意的概率值为.试题解析:(Ⅰ)当a∈{0,1,2,3,4,5},b∈{0,1,2}时,共可以产生6×3=18个一元二次方程.若事件A发生,则a2-4b2≥0,即|a|≥2|b|.又a≥0,b≥0,所以a≥2b.从而数对(a,b)的取值为(0,0),(1,0),(2,0),(2,1),(3,0),(3,1),(4,0),(4,1),(4,2),(5,0),(5,1),(5,2),共12组值.所以P(A)=.(Ⅱ)据题意,试验的全部结果所构成的区域为D={(a,b)|0≤a≤5,0≤b≤2},构成事件A的区域为A={(a,b)|0≤a≤5,0≤b≤2,a≥2b}.在平面直角坐标系中画出区域A、D,如图,其中区域D为矩形,其面积S(D)=5×2=10,区域A为直角梯形,其面积S(A)=.所以P(A)=.19、(Ⅰ);(Ⅱ)详见解析.【解析】

(Ⅰ)显然各类别中,一共有种组合,而选修物理、化学和生物只有一种可能,于是通过古典概率公式即可得到答案;(Ⅱ)找出的所有可能取值有0,1,2,3,依次求得概率,从而得到分布列和数学期望.【详解】解:(Ⅰ)记“某同学选修物理、化学和生物”为事件,因为各类别中,学生选修每门课程的机会均等则,答:该同学选修物理、化学和生物的概率为.(Ⅱ)随机变量的所有可能取值有0,1,2,3.因为,,,,所以的分布列为0123所以数学期望.【点睛】本题主要考查分布列和数学期望的相关计算,意在考查学生处理实际问题的能力,对学生的分析能力和计算能力要求较高.20、解:(1);(2).【解析】试题分析:(1)把代入二次不等式求集合B,根据函数定义域化简集合A,然后根据交集的运算法则直接运算即可.(2)时求出集合B,化简集合A,再求出A、B的补集,根据集合的交集运算即可.试题解析:(1),得,∵,∴,∴.(2)∵,∴,∴,∴.21、(1).(2)(ⅰ);(ⅱ)【解析】

求导并设出切点,建立方程组,解出即可;

(ⅰ)求导得,令,则函数在上有两个零点,,由此建立不等式组即可求解;

(ⅱ)由根与系数的关系可得,,且,故,通过换元令,可得,令,由导数研究其最值即可.【详

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论