版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.用反证法证明命题“设为实数,则方程至多有一个实根”时,要做的假设是A.方程没有实根 B.方程至多有一个实根C.方程至多有两个实根 D.方程恰好有两个实根2.已知随机变量,则参考数据:若,A.0.0148 B.0.1359 C.0.1574 D.0.3148.3.参数方程为参数表示什么曲线A.一个圆 B.一个半圆 C.一条射线 D.一条直线4.在用数学归纳法证明:“凸多边形内角和为”时,第一步验证的等于()A.1 B.3 C.5 D.75.已知点为双曲线上一点,则它的离心率为()A. B. C. D.6.把语文、数学、英语、物理、化学这五门课程安排在一天的五节课中,如果数学必须比语文先上,则不同的排法有多少种()A.24 B.60 C.72 D.1207.已知双曲线的左、右焦点分别为、,过作垂直于实轴的弦,若,则的离心率为()A. B. C. D.8.某学校为了了解本校学生的上学方式,在全校范围内随机抽查部分学生,了解到上学方式主要有:——结伴步行,——自行乘车,——家人接送,——其他方式,并将收集的数据整理绘制成如下两幅不完整的统计图.根据图中信息,求得本次抽查的学生中类人数是()A.30 B.40 C.42 D.489.对于实数,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.某公司从甲、乙、丙、丁四名员工中安排了一名员工出国研学.有人询问了四名员工,甲说:“好像是乙或丙去了.”乙说:“甲、丙都没去.”丙说:“是丁去了.”丁说:“丙说的不对.”若四名员工中只有一个人说的对,则出国研学的员工是()A.甲 B.乙 C.丙 D.丁11.给出一个命题p:若,且,则a,b,c,d中至少有一个小于零,在用反证法证明p时,应该假设()A.a,b,c,d中至少有一个正数 B.a,b,c,d全为正数C.a,b,c,d全都大于或等于0 D.a,b,c,d中至多有一个负数12.甲、乙、丙、丁、戊五名同学参加某种技术竞赛,决出了第一名到第五名的五个名次,甲、乙去询问成绩,组织者对甲说:“很遗憾,你和乙都未拿到冠军”;对乙说:“你当然不会是最差的”.从组织者的回答分析,这五个人的名次排列的不同情形种数共有()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,,则______.14.已知表示两个不同的平面,为平面内的一条直线,则“构成直二面角”是“”的______条件(填“充分不必要”、“必要不充分”、“充要”“或”“既不充分也不必要”).15.从长度为、、、的四条线段中任选三条,能构成三角形的概率为.16.设随机变量,随机变量,若,则_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线:(为参数)和圆的极坐标方程:.(1)分别求直线和圆的普通方程并判断直线与圆的位置关系;(2)已知点,若直线与圆相交于,两点,求的值.18.(12分)己知抛物线:过点(1)求抛物线的方程:(2)设为抛物线的焦点,直线:与抛物线交于,两点,求的面积.19.(12分)已知直线l的参数方程为(为参数).以为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)写出直线l经过的定点的直角坐标,并求曲线的普通方程;(2)若,求直线的极坐标方程,以及直线l与曲线的交点的极坐标.20.(12分)端午节吃粽子是我国的传统习俗,设一盘中装有个粽子,其中豆沙粽个,肉粽个,白粽个,这三种粽子的外观完全相同,从中任意选取个.()求三种粽子各取到个的概率.()设表示取到的豆沙粽个数,求的分布列与数学期望.21.(12分)某校为了了解学生对电子竞技的兴趣,从该校高二年级的学生中随机抽取了人进行检查,已知这人中有名男生对电子竞技有兴趣,而对电子竞技没兴趣的学生人数与电子竞技竞技有兴趣的女生人数一样多,且女生中有的人对电子竞技有兴趣.在被抽取的女生中与名高二班的学生,其中有名女生对电子产品竞技有兴趣,先从这名学生中随机抽取人,求其中至少有人对电子竞技有兴趣的概率;完成下面的列联表,并判断是否有的把握认为“电子竞技的兴趣与性别有关”.有兴趣没兴趣合计男生女生合计参考数据:参考公式:22.(10分)已知某条有轨电车运行时,发车时间间隔(单位:分钟)满足:,.经测算,电车载客量与发车时间间隔满足:,其中.(1)求,并说明的实际意义;(2)若该线路每分钟的净收益为(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?并求每分钟最大净收益.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
反证法证明命题时,首先需要反设,即是假设原命题的否定成立.【详解】命题“设为实数,则方程至多有一个实根”的否定为“设为实数,则方程恰好有两个实根”;因此,用反证法证明原命题时,只需假设方程恰好有两个实根.故选D【点睛】本题主要考查反证法,熟记反设的思想,找原命题的否定即可,属于基础题型.2、B【解析】
根据正态分布函数的对称性去分析计算相应概率.【详解】因为即,所以,,又,,且,故选:B.【点睛】本题考查正态分布的概率计算,难度较易.正态分布的概率计算一般都要用到正态分布函数的对称性,根据对称性,可将不易求解的概率转化为易求解的概率.3、C【解析】分析:消去参数t,把参数方程化为普通方程,即得该曲线表示的是什么图形.详解:参数方程为参数,消去参数t,把参数方程化为普通方程,,即,它表示端点为的一条射线.故选:C.点睛:本题考查了参数方程的应用问题,解题时应把参数方程化为普通方程,并且需要注意参数的取值范围,是基础题.4、B【解析】
多边形的边数最少是,即三角形,即可得解;【详解】解:依题意,因为多边形的边数最少是,即三角形,用数学归纳法证明:“凸多边形内角和为”时,第一步验证的等于时,是否成立,故选:【点睛】本题主要考查数学归纳法的基本原理,属于简单题.用数学归纳法证明结论成立时,需要验证时成立,然后假设假设时命题成立,证明时命题也成立即可,对于第一步,要确定,其实就是确定是结论成立的最小的.5、B【解析】
将点P带入求出a的值,再利用公式计算离心率。【详解】将点P带入得,解得所以【点睛】本题考查双曲线的离心率,属于基础题。6、B【解析】
由题意,先从五节课中任选两节排数学与语文,剩余的三节任意排列,则有种不同的排法.本题选择B选项.7、C【解析】
由题意得到关于a,c的齐次式,然后求解双曲线的离心率即可.【详解】由双曲线的通径公式可得,由结合双曲线的对称性可知是等腰直角三角形,由直角三角形的性质有:,即:,据此有:,,解得:,双曲线中,故的离心率为.本题选择C选项.【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=c2-a2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).8、A【解析】
根据所给的图形,计算出总人数,即可得到A的人数.【详解】解:根据选择D方式的有18人,所占比例为15%,得总人数为120人,故选择A方式的人数为120﹣42﹣30﹣18=30人.故选A.【点睛】本题考查了条形图和饼图的识图能力,考查分析问题解决问题的能力.9、A【解析】
先判断和成立的条件,然后根据充分性和必要性的定义可以选出正确答案.【详解】成立时,需要;成立时,需要,显然由能推出,但由不一定能推出,故“”是“”的充分不必要条件,故本题选A.【点睛】本题考查了充分不必要条件的判断,掌握对数的真数大于零这个知识点是解题的关键.10、A【解析】
逐一假设成立,分析,可推出。【详解】若乙去,则甲、乙、丁都说的对,不符合题意;若丙去,则甲、丁都说的对,不符合题意;若丁去,则乙、丙都说的对,不符合题意;若甲去,则甲、乙、丙都说的不对,丁说的对,符合题意.故选A.【点睛】本题考查合情推理,属于基础题。11、C【解析】
由“中至少一个小于零”的否定为“全都大于等于”即可求解.【详解】因为“a,b,c,d中至少有一个小于零”的否定为“全都大于等于”,
所以由用反证法证明数学命题的方法可得,应假设“全都大于等于”,
故选:C.【点睛】本题主要考查了反证法,反证法的证明步骤,属于容易题.12、D【解析】分析:先排乙,再排甲,最后排剩余三人.详解:先排乙,有种,再排甲,有种,最后排剩余三人,有种因此共有,选D.点睛:求解排列、组合问题常用的解题方法:(1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——“间接法”;(5)“在”与“不在”问题——“分类法”.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
利用两角差的正切公式展开,代入相应值可计算出的值.【详解】.【点睛】本题考查两角差的正切公式的应用,解题时,首先应利用已知角去配凑所求角,然后在利用两角差的公式展开进行计算,考查运算求解能力,属于中等题.14、必要不充分【解析】
根据直二面角的定义、面面垂直的判定理、充分性、必要性的定义可以直接判断.【详解】构成直二面角,说明平面互相垂直,但是不一定成立,比如这两个相交平面的交线显然是平面内的一条直线,它就不垂直于平面;当时,为平面内的一条直线,由面面垂直的判定定理可知:互相垂直,因此构成直二面角,故由可以推出构成直二面角,故“构成直二面角”是“”的必要不充分条件.故答案为:必要不充分【点睛】本题考查了必要不充分条件的判断,考查了面面垂直的判定定理.15、【解析】试题分析:这是的道古典概率题,其基本事件有共4个,由于是任意选取的,所以每个基本事件发生的可能性是相等的,记事件A为“所选三条线段能构成三角形”,则事件A包含2个基本事件,根据概率公式得:.考点:古典概率的计算16、6【解析】因,故,即,则,又随机变量,所以,,应填答案。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)直线,圆,直线和圆相交(2)【解析】
(1)消去直线参数方程中参数,可得直线的普通方程,把两边同时乘以,结合极坐标与直角坐标的互化公式可得曲线的直角坐标方程,再由圆心到直线的距离与圆的半径的关系判断直线和圆的位置关系;(2)把直线的参数方程代入曲线的直角坐标方程,化为关于的一元二次方程,利用参数的几何意义及根与系数的关系,求的值.【详解】解:(1)由:(为参数),消去参数得.由得,因,,则圆的普通方程为.则圆心到直线的距离,故直线和圆相交.(2)设,,将直线的参数方程代入得,因直线过点,且点在圆内,则由的几何意义知.【点睛】本题考查简单曲线的极坐标方程,考查参数方程和普通方程的互化,关键是直线参数方程中参数的几何意义的应用,属于中档题.18、(1);(2)12.【解析】
(1)将点的坐标代入抛物线方程中即可;(2)联立方程组先求出,点坐标,进而利用两点间距离公式求出,然后利用点到直线距离公式求出的高,最后代入三角形面积公式求解即可.【详解】(1)点在抛物线上,将代入方程中,有,解得,抛物线的方程为.(2)如图所示,由抛物线方程可知焦点,则点到直线的距离为,联立方程组,可解得,,所以,,所以,.【点睛】本题主要考查抛物线的标准方程、直线与抛物线的位置关系以及抛物线性质的应用,涉及到的知识点包括两点的之间的距离公式和点到直线的距离公式,意在考查学生对这些基础知识的掌握能力和分析推理能力,属于基础题.19、(1);(2)【解析】试题分析:⑴由题意可知当时直线经过定点,设,即可求出曲线的普通方程;⑵将代入直线的参数方程,可求出直线的普通方程,将代入即可求得直线的极坐标方程,然后联立曲线:,即可求出直线与曲线的交点的极坐标解析:(1)直线经过定点,由得,得曲线的普通方程为,化简得;(2)若,得的普通方程为,则直线的极坐标方程为,联立曲线:.∵得,取,得,所以直线与曲线的交点为.20、(1);(2)见解析.【解析】试题分析:(Ⅰ)根据古典概型的概率公式进行计算即可;(Ⅱ)随机变量X的取值为:0,1,2,别求出对应的概率,即可求出分布列和期望试题解析:(1)令A表示事件“三种粽子各取到1个”,由古典概型的概率计算公式有P(A)==.(2)X的可能取值为0,1,2,且P(X=0)==,P(X=1)==,P(X=2)==综上知,X的分布列为:X
0
1
2
P
故E(X)=0×+1×+2×=(个)考点:离散型随机变量的期望与方差;古典概型及其概率计算公式21、;列联表见解析,没有.【解析】
(1)计算出从名学生中随机抽取人的可能,再计
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年外研版八年级历史上册月考试卷含答案
- 2025年粤教新版九年级历史下册阶段测试试卷
- 2025年人教版选修6历史下册阶段测试试卷含答案
- 2025年湘教新版选修2地理上册月考试卷含答案
- 2025年粤教版九年级科学上册阶段测试试卷含答案
- 2025年冀教版九年级生物上册阶段测试试卷含答案
- 2025年沪教版八年级地理下册阶段测试试卷
- 2025年度跨境电商农产品进出口代理服务合同范本4篇
- 二零二五年度企业年会礼品赞助合作合同协议书4篇
- 二零二五年度南海区劳动就业服务中心农村劳动力转移就业合同4篇
- 中华人民共和国保守国家秘密法实施条例培训课件
- 管道坡口技术培训
- 2024年全国统一高考英语试卷(新课标Ⅰ卷)含答案
- 2024年认证行业法律法规及认证基础知识 CCAA年度确认 试题与答案
- 皮肤储存新技术及临床应用
- 外研版七年级英语上册《阅读理解》专项练习题(含答案)
- 2024年辽宁石化职业技术学院单招职业适应性测试题库必考题
- 上海市复旦大学附中2024届高考冲刺模拟数学试题含解析
- 幼儿园公开课:大班健康《国王生病了》课件
- 小学六年级说明文阅读题与答案大全
- 人教pep小学六年级上册英语阅读理解练习题大全含答案
评论
0/150
提交评论