版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年辽宁省大连市第二十八中学高二数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.某电动汽车“行车数据”的两次记录如下表:记录时间累计里程(单位:公里)平均耗电量(单位:kW·h/公里)剩余续航里程(单位:公里)2019年1月1日
40000.1252802019年1月2日
41000.126146
(注:累计里程指汽车从出厂开始累计行驶的路程,累计耗电量指汽车从出厂开始累计消耗的电量,平均耗电量=,剩余续航里程=,下面对该车在两次记录时间段内行驶100公里的耗电量估计正确的是A.等于12.5 B.12.5到12.6之间C.等于12.6 D.大于12.6参考答案:D【分析】根据累计耗电量的计算公式,即可求解.【详解】由题意,可得,所以对该车在两次记录时间段内行驶100公里的耗电量估计正确的是:大于12.6,故选D.【点睛】本题主要考查了函数模型的应用,其中解答中正确理解题意,根据累计耗电量的公式,准确计算是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.2.参考答案:B略3.已知直线交抛物线于、两点,则△(
)A为直角三角形
B为锐角三角形C为钝角三角形
D前三种形状都有可能参考答案:A略4.点(0,5)到直线的距离是
(
)(A)
(B)
(C)
(D)参考答案:B略5.过点C(2,﹣1)且与直线x+y﹣3=0垂直的直线是()A.x+y﹣1=0 B.x+y+1=0 C.x﹣y﹣3=0 D.x﹣y﹣1=0参考答案:C【考点】直线的一般式方程与直线的垂直关系.【分析】根据已知,与直线x+y﹣3=0垂直的直线的斜率为1,从而可求出直线方程.【解答】解:设所求直线斜率为k,∵直线x+y﹣3=0的斜率为﹣1,且所求直线与直线x+y﹣3=0垂直∴k=1.又∵直线过点C(2,﹣1),∴所求直线方程为y+1=x﹣2,即x﹣y﹣3=0.故选C.【点评】本题考查直线的点斜式方程以及两直线相互垂直的性质等知识,属于基础题.6.一个物体作变速直线运动,速度和时间关系为,则该物体从0秒到4秒运动所经过的路程为(
)A.
B.
C.
D.—参考答案:C略7.已知圆的标准方程为,则此圆的圆心坐标和半径分别为(
)A.
B. C.
D.参考答案:A8.结论为:能被整除,令验证结论是否正确,得到此结论成立的条件可以为()A. B.且 C.为正奇数 D.为正偶数参考答案:C9.下列给变量赋值的语句正确的是(
)A.
B.
C.
D.参考答案:D10.直线与圆相切,则实数等于(
)A.或 B.或
C.或
D.或参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.如图,在平面直角坐标系xOy中,以正方形ABCD的两个顶点A,B为焦点,且过点C,D的双曲线的离心率是.参考答案:【考点】双曲线的简单性质.【分析】设出双曲线方程求出C的坐标,代入化简求解双曲线的离心率即可.【解答】解:设双曲线方程为:,以正方形ABCD的两个顶点A,B为焦点,且过点C,D的双曲线,可得C(c,2c),代入双曲线方程:,即.可得,解得e2=3+2,∴e=.故答案为:.12.已知等差数列{an}中,有,则在等比数列{bn}中,类似的结论为
。参考答案:13.某同学在一次研究性学习中发现:若集合满足:,则共有9组;若集合满足:,则共有49组;若集合满足:,则共有225组.根据上述结果,将该同学的发现推广为五个集合,可以得出的正确结论是:若集合满足:,则共有
组.参考答案:14.若命题,则为____________________;.参考答案:15.曲线f(x)=sin(﹣x)与直线x=﹣,x=,y=0所围成的平面图形的面积为.参考答案:【考点】6G:定积分在求面积中的应用.【分析】根据定积分得定义即可求出【解答】解:曲线f(x)=sin(﹣x)与直线x=﹣,x=,y=0所围成的平面图形的面积为:S=sin(﹣x)dx=cos(﹣x)|=1﹣=,故答案为:.16.在小于等于10000的正整数中,能被2整除或能被3整除,但不能被5整除的数共有
个参考答案:633417.已知a=(4,-3),b=(0,1),则a在b方向上的投影为
.参考答案:-3三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.某校高一年级甲、已两班准备联合举行晚会,两班各派一人先进行转盘游戏,胜者获得一件奖品,负者表演一个节目.甲班的文娱委员利用分别标有数字1,2,3,4,5,6,7的两个转盘(如图所示),设计了一种游戏方案:两人同时各转动一个转盘一次,将转到的数字相加,和为偶数时甲班代表获胜,否则乙班代表获胜.(Ⅰ)根据这个游戏方案,转到的两数之和会出现哪些可能的情况?(Ⅱ)游戏方案对双方是否公平?请说明理由.参考答案:【考点】众数、中位数、平均数.【分析】(Ⅰ)列出两数和的各种情况表格,比较清晰得出结论;(Ⅱ)由两数和的各种情况表格,得出该游戏方案是公平的,计算甲、乙两班代表获胜的概率是相等的.【解答】解:(Ⅰ)两数和的各种情况如下表所示:
45671567826789378910
(Ⅱ)该游戏方案是公平的;因为由上表可知该游戏可能出现的情况共有12种,其中两数字之和为偶数的有6种,为奇数的也有6种,所以甲班代表获胜的概率P1==,乙班代表获胜的概率P2==,即P1=P2,机会是均等的,所以该方案对双方是公平的.19.某校为了普及环保知识,增强学生的环保意识,在全校组织了一次有关环保知识的竞赛.经过初赛、复赛,甲、乙两个代表队(每队3人)进入了决赛,规定每人回答一个问题,答对为本队赢得10分,答错得0分.假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为,,,且各人回答正确与否相互之间没有影响,用ξ表示乙队的总得分.(Ⅰ)求ξ的分布列和数学期望;(Ⅱ)求甲、乙两队总得分之和等于30分且甲队获胜的概率.参考答案:【考点】离散型随机变量的期望与方差;古典概型及其概率计算公式;离散型随机变量及其分布列.【分析】(Ⅰ)由题意知,ξ的可能取值为0,10,20,30,分别求出相应的概率,由此能求出ξ的分布列和Eξ;(Ⅱ)由A表示“甲队得分等于30乙队得分等于0”,B表示“甲队得分等于20乙队得分等于10”,可知A、B互斥.利用互斥事件的概率计算公式即可得出甲、乙两队总得分之和等于30分且甲队获胜的概率.【解答】解:由题意知,ξ的可能取值为0,10,20,30,由于乙队中3人答对的概率分别为,,,P(ξ=0)=(1﹣)×(1﹣)×(1﹣)=,P(ξ=10)=×(1﹣)×(1﹣)+(1﹣)××(1﹣)+(1﹣)×(1﹣)×==,P(ξ=20)=××(1﹣)+(1﹣)××+×(1﹣)×==,P(ξ=30)=××=,∴ξ的分布列为:ξ0102030P∴Eξ=0×+10×+20×+30×=.(Ⅱ)由A表示“甲队得分等于30乙队得分等于0”,B表示“甲队得分等于20乙队得分等于10”,可知A、B互斥.又P(A)==,P(B)=××=,则甲、乙两队总得分之和等于30分且甲队获胜的概率为P(A+B)=P(A)+P(B)==.20.如图,在长方体ABCD﹣A1B1C1D1中,A1C1与B1D1的交点为O1,AC与BD的交点为O.(1)求证:直线OO1∥平面BCC1B1;(2)若AB=BC,求证:平面BDD1B1⊥平面ACC1A1.
参考答案:(1)∵在长方体中,∥且
∴四边形为平行四边形………2分
∵四边形、四边形均为矩形,∴分别是的中点∴∥………4分
∵平面,平面………5分∴直线∥平面………6分(2)在长方体中,,是平面内的两条相交直线,∴平面………7分
∵平面∴………8分
∵∴四边形为正方形,∴……9分
∵是平面内的两条相交直线……10分
∴直线平面……11分
∵平面,∴平面平面……12分21.(本小题满分13分)已知是等差数列,其前项和为,是等比数列(),且,(1)求数列与的通项公式;(2)记为数列的前项和,求参考答案:(1)设数列的公差为,数列的公比为,由已知,由已知可得因此(2)两式相减得故22.已知命题函数在区间上是单调递增函数;命题函数的定义域为,如果命题或为真,且为假,求实数的取值范围.参考答案:或【分析】先根据函数的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑工程自然灾害抗灾设计方案
- 桥梁工程管桁架施工安全方案
- 购物中心停车场外包服务方案
- 有限空间作业与职业健康安全管理总结
- 环保型印染废水处理方案
- 2024-2025学年新教材高中化学第三章晶体结构与性质4离子晶体课时评价含解析新人教版选择性必修第二册
- 2024-2025学年高中生物第1章人体的内环境与稳态2内环境的稳态课时作业含解析新人教版选择性必修1
- 康复中心薪资管理制度
- 2024年农资产品订购协议
- 2023级 大学英语 (一)C学习通超星期末考试答案章节答案2024年
- 《湖南省医疗保险“双通道”管理药品使用申请表》
- 2024年航天科技集团一院18所招聘21人公开引进高层次人才和急需紧缺人才笔试参考题库(共500题)答案详解版
- 《海滨小城》第二课时 公开课一等奖创新教学设计
- 城市轨道综合实训总结报告
- MOOC 宪法学-西南政法大学 中国大学慕课答案
- 学生的权利与义务-学生的法律地位及权利保护
- 【教案】心灵的幻象+教学设计-高一美术湘美版(2019)美术鉴赏
- 人教版2022-2023学年三年级语文上册期中试卷及答案
- GB/T 20001.1-2024标准起草规则第1部分:术语
- (正式版)QBT 2174-2024 不锈钢厨具
- MOOC 计量学基础-中国计量大学 中国大学慕课答案
评论
0/150
提交评论