版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年河南省南阳市内乡中学高一数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在△ABC中,,,则的值是(
)A. B. C. D.参考答案:A【分析】利用正弦定理的推论即可求解.【详解】因为,,由正弦定理.故选:A【点睛】本题考查了正弦定理的推论,属于基础题.2.若函数f(x)=logax(0<a<1)在区间上的最大值是最小值的2倍,则a的值为()A. B. C. D.参考答案:B【考点】对数函数的值域与最值.【专题】函数的性质及应用.【分析】利用对数函数的单调性确定最大值和最小值,利用条件建立方程即可求a.【解答】解:∵0<a<1,∴对数函数f(x)=logax在上单调递减,∴最大值为f(a)=logaa=1,最小值为f(2a)=loga2a,∵f(x)在区间上的最大值是最小值的2倍,∴f(a)=2f(2a),即1=2loga2a,∴loga2a=,即,∴,解得a=,故选:B.【点评】本题主要考查对数函数的运算和求值,利用对数函数的单调性确定函数的最大值和最小值是解决本题的关键,比较基础.3.下列四个函数中,与y=x表示同一个函数的是(
)A.
B.
C.
D.参考答案:B4.使有意义的值构成的集合记为A,使有意义的值构成的集合记为B,那么=(
)A.
B.C.
D.参考答案:A5.
已知函数,若,则实数
()A.
B.
C.或
D.或参考答案:C6.函数的零点x0所在的一个区间是 (
)A.(-2,-1)
B.(-1,0)
C.(0,1)
D.(1,2)参考答案:B∴,∴函数在内存在唯一的零点,故选B.
7.已知平面向量=(1,2),=(﹣2,m),且∥,则=()A.(﹣5,﹣10) B.(﹣4,﹣8) C.(﹣3,﹣6) D.(﹣2,﹣4)参考答案:B【考点】9M:平面向量坐标表示的应用.【分析】向量平行的充要条件的应用一种做法是根据平行求出向量的坐标,然后用向量线性运算得到结果;另一种做法是针对选择题的特殊做法,即排除法.【解答】解:排除法:横坐标为2+(﹣6)=﹣4,故选B.8.如图,一个空间几何体的主视图、左视图、俯视图均为全等的等腰直角三角形,且直角三角形的直角边长为1,那么这个几何体的体积为(
)A.
B.
C.
D.参考答案:A9.用、、表示三条不同的直线,表示平面,给出下列命题:①若∥,∥,则∥;②若⊥,⊥,则⊥;③若∥,∥,则∥;④若⊥,⊥,则∥.其中正确命题的序号是
(
)
A.①②
B.②③
C.①④
D.③④参考答案:C略10.化简等于(
)
A.
B.
C.3
D.1参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.已知扇形的半径为12,弧长为18,则扇形圆心角为
参考答案:12.函数的最大值是
.参考答案:1略13.若函数是偶函数,则的增区间是
。参考答案:14.已知函数,点为曲线在点处的切线上的一点,点在曲线上,则的最小值为____________.参考答案:考点:导数的几何意义及数形结合思想的综合运用.【易错点晴】本题设置了一道以两函数的解析式为背景,其的目的意在考查方程思想与数形结合的意识及运用所学知识去分析问题解决问题的能力.解答本题时要充分运用题设中提供的图像信息,先运用赋值法求出,进而求出,然后将问题等价转化为与直线平行且曲线相切的切点到直线的距离即为所求两个函数与的图像的交点的个数问题.解答时先求得,故切线斜率,解得,也即,该点到直线的距离为,从而获得答案.15.函数,的值域是_____________.参考答案:[0,4]略16.已知数列的首项,其前和为,且满足.若对任意的,都有恒成立,则的取值范围是
.参考答案:略17.已知向量,且,则m=________.参考答案:-2【分析】根据向量坐标运算和向量,得到,即可求解.【详解】由题意,向量,,因为,所以,解得.【点睛】本题主要考查了向量的坐标运算,以及向量的共线条件的应用,其中解答中熟记平面向量的共线条件是解答的关键,着重考查了运算与求解能力,属于基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数).(1)求函数的最小正周期;(2)若,求的值.参考答案:略19.(本题满分10分)已知函数的定义域为集合,函数,的值域为集合.(1)求;(2)若集合,且,求实数的取值范围.参考答案:20.如图,在平面直角坐标系中,锐角的终边分别与单位圆交于两点.(1)如果点的纵坐标为,点的横坐标为,求;(2)已知点,,求.参考答案:(1)∵点的纵坐标为,点的纵坐标为,∴,.∵为锐角,∴,,∴;(2)∵,∴,∴,∵,∴,∴.21.已知函数.(1)求函数的单调减区间;(2)若,求函数的值域.参考答案:(1)(2)【分析】(1)利用降幂公式可得,再利用复合函数的单调性的讨论方法可求函数的单调减区间.(2)求出,再利用正弦函数的性质可求函数的值域.【详解】,(1)当时为减函数,即时为减函数,则为减区间为,(2)当时,,∴,∴值域为.【点睛】形如的函数,可以利用降幂公式和辅助角公式将其化为的形式,再根据复合函数的讨论方法求该函数的单调区间、对称轴方程和对称中心等.22.如图,边长为2的正方形ABCD中,(1)点E是AB的中点,点F是BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于点A′.求证:A′D⊥EF.(2)当时,求三棱锥A′﹣EFD体积.参考答案:【分析】(1)利用折叠前后直角不变,结合线面垂直的判定得到A′D⊥平面A′EF,从而得到A′D⊥EF;(2)求出△A′EF的面积,结合DA′⊥面A′EF,利用等积法把三棱锥A′﹣EFD体积转化为三棱锥D﹣A′EF的体积求解.【解答】(1)证明:由已知,折叠前,有AD⊥AE,CD⊥CF,折叠后,有A′D⊥A′E,A′D⊥
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024物业公司承担住宅小区垃圾清运的合同
- 2025年度留置车辆处置借款合同4篇
- 2025年grc构件生产线投资建设与运营合同3篇
- 年度PAPTFE竞争策略分析报告
- 年度童书产业分析报告
- 2024-2025学年新教材高中语文基础过关训练15谏逐客书含解析部编版必修下册
- 二零二五版白糖仓储物流服务合同范本2篇
- 2025年理疗项目合作协议范本:特色理疗项目合作框架协议3篇
- 2025年度中小企业间资金周转互助合同范本
- 二零二五年度商业地产租赁合同中情势变更处理办法及责任划分4篇
- 骨科手术后患者营养情况及营养不良的原因分析,骨伤科论文
- GB/T 24474.1-2020乘运质量测量第1部分:电梯
- GB/T 12684-2006工业硼化物分析方法
- 定岗定编定员实施方案(一)
- 高血压患者用药的注意事项讲义课件
- 特种作业安全监护人员培训课件
- (完整)第15章-合成生物学ppt
- 太平洋战争课件
- 封条模板A4打印版
- T∕CGCC 7-2017 焙烤食品用糖浆
- 货代操作流程及规范
评论
0/150
提交评论