版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省洛阳市第四中学2021-2022学年高二数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知则a,b,c的大小关系是(
)A.a>b>c B.b>a>c C.a>c>b D.c>b>a参考答案:D【分析】对于看成幂函数,对于与的大小和1比较即可【详解】因为在上为增函数,所以,由因为,,,所以,所以选择D【点睛】本题主要考查了指数、对数之间大小的比较,常用的方法:1、通常看成指数、对数、幂函数比较。2、和0、1比较。2.如果平面图形中的两条线段平行且相等,那么在它的直观图中对应的这两条线段…………(▲)A.平行且相等
B.平行不相等C.相等不平行
D.既不平行也不相等参考答案:A略3.(15分)已知等差数列{an}满足
(1)求数列{an}的通项公式;
(2)求数列的前n项和.参考答案:4.以下命题中真命题的序号是()①若棱柱被一平面所截,则分成的两部分不一定是棱柱;②有两个面平行,其余各面都是平行四边形的几何体叫棱柱;③有一个面是多边形,其余各面都是三角形的多面体一定是棱锥;④当球心到平面的距离小于球面半径时,球面与平面的交线总是一个圆.A.①④ B.②③④ C.①②③ D.①②③④参考答案:A【分析】利用棱柱,棱锥和球的有关概念对命题进行判断即可.【详解】①若棱柱被一平面所截,则分成的两部分不一定是棱柱,只有平行于底面的平面截棱柱分成的两部分一定是棱柱,正确.②有两个面平行,其余各面都是平行四边形的几何体并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱,故不正确;③有一个面是多边形,其余各面都是三角形的多面体不一定是棱锥,由三棱锥的定义可知:其余各面都是共有同一个顶点的三角形的多面体,故不正确;④当球心到平面的距离小于球面半径时,球面与平面的交线总是一个圆,正确.综上可得:只有①④正确.故选:A.【点睛】本题考查棱柱,棱锥的定义、球的性质,属于基础题.5.若直线ax+by=1与圆x2+y2=1相交,则点P(a,b)的位置是(
)A、在圆上
B、在圆外
C、在圆内
D、都有可能参考答案:B6.函数具有性质()A.图象关于点对称,最大值为B.图象关于点对称,最大值为1C.图象关于直线对称,最大值为D.图象关于直线对称,最大值为1参考答案:A【考点】诱导公式的作用;正弦函数的定义域和值域;正弦函数的对称性.【分析】化简函数的表达式,通过x=代入函数的表达式,函数是否取得最值,说明对称轴以及最值,判断C,D的正误;函数值为0则说明中心对称,判断A,B的正误.【解答】解:函数=﹣sinx+﹣=﹣cos(x+),x=时,函数=0.图象关于点对称,最大值为故选:A.7.已知焦点在x轴上的椭圆过点A(﹣3,0),且离心率e=,则椭圆的标准方程是()A.=1 B.=1C.=1 D.=1参考答案:D【考点】椭圆的简单性质.【专题】方程思想;分析法;圆锥曲线的定义、性质与方程.【分析】设椭圆的方程为+=1(a>b>0),由题意可得a=3,由离心率公式和a,b,c的关系,可得b,进而得到椭圆方程.【解答】解:设椭圆的方程为+=1(a>b>0),由题意可得a=3,e==,可得c=,b===2,则椭圆方程为+=1.故选:D.【点评】本题考查椭圆的方程的求法,注意运用椭圆的性质及离心率公式和a,b,c的关系,考查运算能力,属于基础题.8.在△ABC中,a=15,b=10,A=60°,则cosB=()A.﹣ B. C.﹣ D.参考答案:D【考点】正弦定理.【分析】根据正弦定理先求出sinB的值,再由三角形的边角关系确定∠B的范围,进而利用sin2B+cos2B=1求解.【解答】解:根据正弦定理可得,,解得,又∵b<a,∴B<A,故B为锐角,∴,故选D.【点评】正弦定理可把边的关系转化为角的关系,进一步可以利用三角函数的变换,注意利用三角形的边角关系确定所求角的范围.9.已知实数x,y满足方程x2+y2=1,则的取值范围是()A. B. C. D.参考答案:C【考点】直线与圆的位置关系.【分析】由的几何意义,即圆x2+y2=1上的动点与定点P(2,0)连线的斜率求解.【解答】解:如图,设过P(2,0)的直线的斜率为k,则直线方程为y=k(x﹣2),即kx﹣y﹣2k=0,由坐标原点O(0,0)到直线kx﹣y﹣2k=0的距离等于1,得,解得:k=.∴的取值范围是[].故选:C.【点评】本题考查直线与圆锥曲线位置关系的应用,考查了数学转化思想方法,考查数形结合的解题思想方法,是中档题.10.设分别是定义在R上的奇函数和偶函数,且分别是的导数,当时,且,则不等式的解集是()A.(-6,0)∪(6,+∞) B.(-∞,-6)∪(0,6)C.(-6,0)∪(0,6) D.(-∞,-6)∪(6,+∞)参考答案:B【分析】构造函数,首先证得函数的奇偶性,然后根据题目所给条件判断函数的单调性,结合函数的零点求得不等式的解集.【详解】构造函数,故,故函数为奇函数,图像关于原点对称,且.当时,即函数在时单调递增.根据函数为奇函数可知函数在时递增,且,,,画出函数的大致图像如下图所示,由图可知,不等式的解集为,故选B.【点睛】本小题主要考查函数的奇偶性,考查构造函数法,考查利用导数研究函数的单调性,考查两个函数相乘的导数,考查数形结合的数学思想方法,综合性较强,属于中档题.二、填空题:本大题共7小题,每小题4分,共28分11.(坐标系与参数方程选做题)设点的极坐标为,直线过点且与极轴所成的角为,则直线的极坐标方程为
.参考答案:或或或略12.
若执行如下图所示的框图,输入x1=1,x2=2,x3=4,x4=8,则输出的数等于________.参考答案:13.观察下列等式:=(﹣)×,=(﹣)×,=(﹣)×,=(﹣)×,…可推测当n≥3,n∈N*时,=().参考答案:(﹣)×略14.已知(x,y)在映射f下的象是(x-y,x+y),则(3,5)在f下的象是_________,原象是_____________参考答案:(-2,8),(4,1)略15.若不等式ax2+bx+2>0的解集为},则a+b=________.参考答案:解:若不等式ax2+bx+2>0的解集为},则与是方程ax2+bx+2>0的解,由韦达定理得,所以a=-12,b=-2,故a+b=-14.16.如图,已知圆锥S0的母线SA的长度为2,一只蚂蚁从点B绕着圆锥侧面爬回点B的最短距离为2,则圆锥SO的底面半径为.参考答案:【考点】多面体和旋转体表面上的最短距离问题.【分析】把圆锥侧面展开成一个扇形,则对应的弧长是底面的周长,对应的弦是最短距离,求出∠S=,可得=,即可得出结论.【解答】解:把圆锥侧面展开成一个扇形,则对应的弧长是底面的周长,对应的弦是最短距离,即BB′的长是蚂蚁爬行的最短路程,∵圆锥S0的母线SA的长度为2,一只蚂蚁从点B绕着圆锥侧面爬回点B的最短距离为2,∴∠S=,∴=,设圆锥SO的底面半径为r,则2πr=,∴r=.故答案为:.17.已知,是夹角为的两个单位向量,,,若,则实数k的值为__________.参考答案:.【分析】直接利用向量数量积公式化简即得解.【详解】因为,所以,所以,所以=-7.故答案为:-7【点睛】本题主要考查平面向量的数量积的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.等比数列{an}的前n项和为Sn,已知S1,S3,S2成等差数列,(1)求{an}的公比q;(2)求a1﹣a3=3,求Sn.参考答案:【考点】等差数列的性质;等比数列的前n项和.【分析】(Ⅰ)由题意知a1+(a1+a1q)=2(a1+a1q+a1q2),由此可知2q2+q=0,从而.(Ⅱ)由已知可得,故a1=4,从而.【解答】解:(Ⅰ)依题意有a1+(a1+a1q)=2(a1+a1q+a1q2)由于a1≠0,故2q2+q=0又q≠0,从而(Ⅱ)由已知可得故a1=4从而19.在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,已知点A的极坐标为(,),直线l的极坐标方程为ρcos(θ﹣)=a,且点A在直线l上,(1)求a的值及直线l的直角坐标方程;(2)圆C的参数方程为(α为参数),试判断直线l与圆C的位置关系.参考答案:【考点】QH:参数方程化成普通方程;Q4:简单曲线的极坐标方程;QJ:直线的参数方程.【分析】(1)根据点A在直线l上,将点的极坐标代入直线的极坐标方程即可得出a值,再利用极坐标转化成直角坐标的转换公式求出直线l的直角坐标方程;(2)欲判断直线l和圆C的位置关系,只需求圆心到直线的距离与半径进行比较即可,根据点到线的距离公式求出圆心到直线的距离然后与半径比较.【解答】解:(1)点A(,)在直线l上,得cos(θ﹣)=a,∴a=,故直线l的方程可化为:ρsinθ+ρcosθ=2,得直线l的直角坐标方程为x+y﹣2=0;(2)消去参数α,得圆C的普通方程为(x﹣1)2+y2=1圆心C到直线l的距离d=<1,所以直线l和⊙C相交.20.规定其中x∈R,m为正整数,且=1,这是排列数A(n,m是正整数,且m≤n)的一种推广.
(1)求A的值;
(2)排列数的两个性质:①A=nA,②A+mA=A(其中m,n是正整数).是否都能推广到A(x∈R,m是正整数)的情形?若能推广,写出推广的形式并给予证明;若不能,则说明理由;
(3)确定函数A的单调区间.参考答案:21.(本小题满分12分)某学校举办“有奖答题”活动,每位选手最多答10道题,每道题对应1份奖品,每份奖品价值相同。若选手答对一道题,则得到该题对应的奖品。答对一道题之后可选择放弃答题或继续答题,若选择放弃答题,则得到前面答对题目所累积的奖品;若选择继续答题,一旦答错,则前面答对题目所累积的奖品将全部送给现场观众,结束答题。
假设某选手答对每道题的概率均为,且各题之间答对与否互不影响。已知该选手已经答对前6道题。(Ⅰ)如果该选手选择继续答题,并在最后4道题中,在每道题答对后都选择继续答题。
(ⅰ)求该选手第8题答错的概率;
(ⅱ)记该选手所获得的奖品份数为,写出随机变量的所有可能取值并求的数学期望;(Ⅱ)如果你是该选手,你是选择继续答题还是放弃答题?若继续答题你将答到第几题?请用概率或统计的知识给出一个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度广告投放与宣传合作合同
- 《清代盛京地区柳条边研究》
- 《企业内部审计外包问题研究》
- 2024年北京市企业间技术转让合同
- 《β-环糊精金属有机骨架材料高效液相色谱柱的制备及应用》
- 《洋参御唐方治疗糖尿病肾脏病Ⅳ期(脾肾阳虚夹瘀证)的临床观察》
- 《论用人单位欠缴养老保险费的法律救济》
- 《镍基催化剂在硝基化合物还原偶联成亚胺类化合物反应中的性能研究》
- 《超高压处理对不同富硒浓度甘薯贮藏蛋白质结构及功能特性的影响》
- 《不同目标血压复苏对创伤失血性休克患者外周血炎症因子和血流动力学的影响》
- 2022公路工程施工技术方案手册
- 亮化工程可行性研究报告
- 安全生产费用提取使用明细
- (完整版)病例演讲比赛PPT模板
- 直播合作协议
- 社科类课题申报工作辅导报告课件
- 头痛的诊治策略讲课课件
- 沙利文-内窥镜行业现状与发展趋势蓝皮书
- 国家开放大学一网一平台电大《建筑测量》实验报告1-5题库
- 规范诊疗服务行为专项整治行动自查表
- (新平台)国家开放大学《建设法规》形考任务1-4参考答案
评论
0/150
提交评论