版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京平西府中学2022-2023学年高一数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数(,且)在R上单词递增,且函数与的图象恰有两个不同的交点,则实数a的取值范围是()A. B.C. D.参考答案:C【分析】函数在R上单调递增,所以每一段均要递增,且第一段的端点值要不小于第二段的端点值;函数与直线有两个不同交点,画出函数图像可以得出,有两种情况,然后分情况讨论解决问题。【详解】解:函数在R上单调递增,所以有,解得;因为函数与直线有两个不同交点,作出两个函数的图像,由图像知,直线与函数图像只有一个交点,故直线与只能有一个公共点。根据图像,可分如下两种情况:如图(1)的情况,与相交于一点,此时满足,解得,故;
图1
图2如图2的情况,直线与相切于一点,联立方程组得,即:所以,,解得综上:或,故选C。【点睛】本题考查了分段函数的单调性问题,此问题不仅仅要考虑每一段的单调性情况,还要注意端点的大小关系;函数图像交点个数的问题,往往需要数形结合,图形的准确作出是解题关键。2.已知集合A={x|x2﹣1=0},用列举法表示集合A=()A.{1} B.{﹣1} C.(﹣1,1) D.{﹣1,1}参考答案:D【考点】集合的表示法.【专题】计算题;集合思想;定义法;集合.【分析】先根据方程的解法解得x,再根据集合的表示方法,列举即可.【解答】解:x2﹣1=0,解得x=﹣1,或x=1,列举法表示集合A={﹣1,1},故选:D.【点评】本题考查了集合的方法,属于基础题.3.在等差数列{an}中,,,则数列的通项公式an为(
)A. B. C. D.参考答案:C【分析】直接利用等差数列公式解方程组得到答案.【详解】故答案选C【点睛】本题考查了等差数列的通项公式,属于基础题型.4. 已知数列,若,记Sn为的前n项和,则使Sn达到最大的n值为(
)A.13 B.12 C.11 D.10参考答案:B略5.函数的定义域为()高考资源网A.
B.
C.D.参考答案:D6.若0<x<y<1,则()A.3y<3x B.logx3<logy3 C.log4x<log4y D.参考答案:C【考点】对数函数的单调性与特殊点;指数函数的单调性与特殊点.【分析】根据对数函数的单调性,y=log4x为单调递增函数,可得答案.【解答】解:∵函数f(x)=log4x为增函数∴log4x<log4y故选C.【点评】本题主要考查指数函数与对数函数的单调性,即底数大于1时单调递增,底数大于0小于1时单调递减.这也是高考中必考的内容.7.已知点A(1,1),B(-1,)直线过原点,且与线段AB有交点,则直线的斜率的取值范围为(
)A.
B.
C.
D.参考答案:D8.设函数,则的表达式是(
)A.
B.
C.
D.参考答案:A略9.若关于x的方程=k有4个不相等的实数根,则实数k的取值范围是
.参考答案:1<k<3或k=0略10.下列向量中,与(3,2)垂直的向量是()A.(3,﹣2) B.(2,3) C.(﹣3,2) D.(﹣4,6)参考答案:D【考点】9T:数量积判断两个平面向量的垂直关系.【分析】设向量(x,y)与(3,2)垂直,则3x+2y=0,经过验证即可得出.【解答】解:设向量(x,y)与(3,2)垂直,则3x+2y=0,经过验证只有:(﹣4,6)满足上式.故选:D.【点评】本题考查了向量垂直与数量积的关系,考查了推理能力与计算能力,属于基础题.二、填空题:本大题共7小题,每小题4分,共28分11.某公司的广告费支出x与销售额y(单位:万元)之间有下列对应数据:由资料显示对呈线性相关关系。x24568y3040605070
根据上表提供的数据得到回归方程中的,预测销售额为115万元时约需
万元广告费.参考答案:1512.已知点A(1,1),B(﹣2,2),直线l过点P(﹣1,﹣1)且与线段AB始终有交点,则直线l的斜率k的取值范围为.参考答案:k≤﹣3,或k≥1【考点】直线的斜率.【分析】由题意画出图形,数形结合得答案.【解答】解:如图,∵A(1,1),B(﹣2,2),直线l过点P(﹣1,﹣1),又,∴直线l的斜率k的取值范围为k≤﹣3,或k≥1.故答案为:k≤﹣3,或k≥1.13.数列的前项和,则__________.参考答案:48【考点】8E:数列的求和;8H:数列递推式.【分析】把代入化简整理得进而可知数列是等比数列,求得,根据等比数列的通项公式求得数列的通项公式,进而根据求得答案.【解答】解:∵,∴整理得∵,∴,∴数列是以为首项,为公比的等比数列,∴,∴,∴,∴,故答案为.14.已知奇函数f(x)是定义在(﹣3,3)上的减函数,且满足不等式f(x﹣3)+f(x2﹣3)<0,则不等式解集.参考答案:(2,)【考点】函数单调性的性质;一元二次不等式的解法.【分析】利用函数是奇函数,将不等式转化为f(x2﹣3)<﹣f(x﹣3)=f(3﹣x),然后利用函数是减函数,进行求解.【解答】解:因为f(x)是奇函数,所以不等式f(x﹣3)+f(x2﹣3)<0等价为f(x2﹣3)<﹣f(x﹣3)=f(3﹣x),又f(x)是定义在(﹣3,3)上的减函数,所以,即,解得2,即不等式的解集为(2,).故答案为:(2,).15.某工厂8年来某产品产量y与时间t年的函数关系如下图,则:①前3年总产量增长速度越来越快;②前3年中总产量增长速度越来越慢;③第3年后,这种产品停止生产;④第3年后,这种产品年产量保持不变.以上说法中正确的是_______.参考答案:①
③16.若圆上有且只有两个点到直线的距离等于1,则半径的取值范围是A.(0,2)
B.(1,2)
C.(1,3)
D.(2,3)参考答案:(-2,3);略17.已知函数,则的值是____________.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在正项等比数列{an}中,且,,成等差数列(1)求数列的通项公式;(2)若数列{bn}满足,求数列{bn}的前n项和Sn.参考答案:(1)(2)【分析】(1)根据,,成等差数列建立方程式求解公比,得出通项公式。(2)根据错位相减求解数列的前项和。【详解】(1),,(2)①-②得【点睛】本题属于基础题,利用方程求解数列的基本量,进而得出通项公式。等比数列乘等差数列型利用错位相减法求解。19.(本小题满分12分)已知(Ⅰ)解关于的不等式(Ⅱ)若关于的不等式的解集为求实数的值.参考答案:(Ⅰ)由已知不等式的解集为:
………6分(Ⅱ)是方程的两根
………12分20.(10分)已知函数f(x)=sin2x+sinxcosx﹣.(1)求f(x)的最小正周期;(2)设△ABC的三个角A,B,C所对的边分别为a,b,c,若f(+)=1,且a=2,求b+c的取值范围.参考答案:21.某商场为经营一批每件进价是10元的小商品,对该商品进行为期5天的市场试销.下表是市场试销中获得的数据.销售单价/元6550453515日销售量/件156075105165根据表中的数据回答下列问题:(1)试销期间,这个商场试销该商品的平均日销售利润是多少?(2)试建立一个恰当的函数模型,使它能较好地反映日销售量(件)与销售单价(元)之间的函数关系,并写出这个函数模型的解析式;
(3)如果在今后的销售中,该商品的日销售量与销售单价仍然满足(2)中的函数关系,试确定该商品的销售单价,使得商场销售该商品能获得最大日销售利润,并求出这个最大的日销售利润.(提示:必要时可利用右边给出的坐标纸进行数据分析).参考答案:本小题考查平均数的概念,一次函数与二次函数等有关知识;考查统计观念,数据分析和数学建模能力,利用知识解决实际问题的能力..解:(1)设平均日销售利润为M,则
=165+5105+775+860+1115
=1860.
……………2分(2)依题意画出散点图,根据点的分布特征,可考虑以y=kx+b作为刻画日销售量与销售单价之间关系的函数模型,取其中的两组数据(45,75),(65,15)代入y=kx+b得:
解得,这样,得到一个函数模型为y=-3x+210(10≤x≤70).……………5分将其他已知数据代入上述解析式知,它们也满足这个解析式,即这个函数模型与已知数据的拟合程度较好,这说明所求的函数解析式能较好地反映销售量与销售单价之间的关系.………………6分(3)设经营此商品的日销售利润为P元,由(2)知
……………7分即当该商品的单价为每件40元时,商场销售该商品的日销售利润最大,为2700元.
………………8分
22.(本题满分12分)一投资商拟投资、两个项目,预计投资项目万元可获得利润万元;投资项目万元可获得利润万元。若这个投资商用60万元来投资这两个项目,则分别投资多少钱能够获得最大利润?最大利润是多少?参考答案:解:设x万元投资于A项目,而用剩下的(60-x)万元投资于B项目,则其总利润为W=-(x-40)2+100+(-x2+x)--------------------------------6分=-(x-30)2+990.--------------------
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酒店大堂的安保措施介绍
- 旅游科普服务合同
- 艺术涂料施工协议
- 市政环卫洒水车租赁合同
- 退休硬件工程师维护合同
- 租赁GPS车辆安全监控系统合同
- 临时检验员聘用合同模板
- 城市规划光纤铺设合同
- 古董家具修复喷漆协议
- 空调维修工程师聘用合同年薪制
- 煤矿安全生产信息化建设
- 店铺包工包料装修合同范本
- 房屋拆迁实施方案
- 工业机器人故障诊断与健康管理系统
- 量子密话产品话术
- 胃腺癌的早期诊断与筛查
- Unit3 Celebrations Topic Talk 说课课件-2023-2024学年高中英语北师大版(2019)必修第一册
- 储能系统介绍-电化学能-储能电站
- 分布式文件存储方案
- 小学家长进课堂课件-认识桥梁
- 《PCB设计与制作(基于Altium-Designer)》教材配套电子课件电子教案(全)完整版课件
评论
0/150
提交评论