2022-2023学年浙江省衢州市定阳中学高二数学理模拟试题含解析_第1页
2022-2023学年浙江省衢州市定阳中学高二数学理模拟试题含解析_第2页
2022-2023学年浙江省衢州市定阳中学高二数学理模拟试题含解析_第3页
2022-2023学年浙江省衢州市定阳中学高二数学理模拟试题含解析_第4页
2022-2023学年浙江省衢州市定阳中学高二数学理模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年浙江省衢州市定阳中学高二数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知定义在R上的奇函数,设其导函数为,当时,恒有,令,则满足的实数x的取值范围是()A. B.(-2,1) C.(-1,2) D.参考答案:A试题分析:定义在R上的奇函数f(x),所以:f(-x)=-f(x)设f(x)的导函数为f′(x),当x∈(-∞,0]时,恒有xf′(x)<f(-x),则:xf′(x)+f(x)<0即:[xf(x)]′<0所以:函数F(x)=xf(x)在(-∞,0)上是单调递减函数.由于f(x)为奇函数,令F(x)=xf(x),则:F(x)为偶函数.所以函数F(x)=xf(x)在(0,+∞)上是单调递增函数.则:满足F(3)>F(2x-1)满足的条件是:解得:<x<2所以x的范围是:(,2)考点:利用导数研究函数的单调性2.圆的位置关系(

A.相离

B.相切

C.相交

D.以上都有可能参考答案:C3.“a≥3”是“直线l:2ax﹣y+2a2=0(a>0)与双曲线C:﹣=1的右支无交点”的(

A、充分不必要条件

B、必要不充分条件

C、充要条件

D、既不充分也不必要条件参考答案:A

【考点】必要条件、充分条件与充要条件的判断【解答】解:3=3sinθ|=3sin=,

则不等式a≥3等价为a≥,

直线l:2ax﹣y+2a2=0(a>0)斜截式方程为l:y=2ax+2a2(a>0),

双曲线C:﹣=1的渐近线方程为y=±x,

∵2ax﹣y+2a2=0(a>0)与双曲线C:﹣=1的右支无交点,

∴直线l的斜率不小于双曲线C的渐近线y=x的斜率,

∴2a≥,

解得a≥1,

∴a≥3”是“直线l:2ax﹣y+2a2=0(a>0)与双曲线C:﹣=1的右支无交点”充分不必要条件,

故选:A.

【分析】先根据定积分的计算求出a的范围,再根据直线和双曲线的位置关系求出a的范围,根据充分必要的条件的定义即可判断.

4.某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A. B. C. D.参考答案:B【考点】几何概型.【分析】求出小明等车时间不超过10分钟的时间长度,代入几何概型概率计算公式,可得答案.【解答】解:设小明到达时间为y,当y在7:50至8:00,或8:20至8:30时,小明等车时间不超过10分钟,故P==,故选:B5.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为,一个焦点的坐标是(3,0),则椭圆的标准方程为(

)A.

B.

C.

D.

参考答案:B6.一个多面体的三视图如图所示,则该多面体的体积为()A. B. C.6 D.7参考答案:A【考点】由三视图求面积、体积.【专题】空间位置关系与距离.【分析】判断几何体的形状,结合三视图的数据,求出几何体的体积.【解答】解:由三视图可知,该多面体是由正方体截去两个正三棱锥所成的几何体,如图,正方体棱长为2,正三棱锥侧棱互相垂直,侧棱长为1,故几何体的体积为:V正方体﹣2V棱锥侧=.故选:A.【点评】本题考查三视图求解几何体的体积,解题的关键是判断几何体的形状.7.已知随机变量则使取得最大值的k值为A.2

B.3

C.4

D.5参考答案:A略8.某几何体的三视图如图所示,根据图中数据,可得该几何体的体积是(

)A. B. C. D.参考答案:B【考点】由三视图求面积、体积.【专题】图表型.【分析】易得此几何体为一个正方体和正棱锥的组合题,根据图中数据我们易得到正方体和正棱锥的底面边长和高,根据体积公式,把相关数值代入即可求解.【解答】解:由三视图可知,可得此几何体为正方体+正四棱锥,∵正方体的棱长为,其体积为:3,又∵正棱锥的底面边长为,高为,∴它的体积为×3×=∴组合体的体积=,故选B.【点评】本题考查的知识点是由三视图求体积,解决本题的关键是得到该几何体的形状.9.若某几何体的三视图(单位:cm)如图所示,其中左视图是一个边长为2的正三角形,则这个几何体的体积是()A.2cm2 B.cm3 C.3cm3 D.3cm3参考答案:B【考点】由三视图求面积、体积.【分析】由几何体的三视图得到原几何体的底面积与高,进而得到该几何体的体积.【解答】解:由几何体的三视图可知,该几何体为底面是直角梯形,高为的四棱锥,其中直角梯形两底长分别为1和2,高是2.故这个几何体的体积是×[(1+2)×2]×=(cm3).故选:B.10.(多选题)有关独立性检验的四个命题,其中正确的是(

)A.两个变量的2×2列联表中,对角线上数据的乘积相差越大,说明两个变量有关系成立的可能性就越大B.对分类变量X与Y的随机变量K2的观测值k来说,k越小,“X与Y有关系”的可信程度越小C.从独立性检验可知:有95%的把握认为秃顶与患心脏病有关,我们说某人秃顶,那么他有95%的可能患有心脏病D.从独立性检验可知:有99%的把握认为吸烟与患肺癌有关,是指在犯错误的概率不超过1%的前提下认为吸烟与患肺癌有关参考答案:ABD【分析】观测值越大,两个变量有关系的可能性越大,选项正确;根据独立性检验,观测值越小,两个有关系的可信度越低,选项正确;独立性检验的结论适合于群体的可能性,不能认为是必然情况,选项不正确;根据独立性的解释,选项正确.【详解】选项,两个变量的2×2列联表中,对角线上数据的乘积相差越大,则观测值越大,两个变量有关系的可能性越大,所以选项正确;选项,根据的观测值越小,原假设“X与Y没关系”成立的可能性越大,则“X与Y有关系”的可信度越小,所以选项正确;选项,从独立性检验可知:有95%的把握认为秃顶与患心脏病有关,不表示某人秃顶他有95%的可能患有心脏病,所以选项不正确;选项,从独立性检验可知:有99%的把握认为吸烟与患肺癌有关,是指在犯错误的概率不超过1%的前提下认为吸烟与患肺癌有关,是独立性检验的解释,所以选项正确.故选:ABD.【点睛】本题考查独立性检验概念辨析、观测值与独立性检验的关系,意在考查概念的理解,属于基础题.二、填空题:本大题共7小题,每小题4分,共28分11.若,则_________.参考答案:1【分析】展开式中,令,得到所有系数和,令得到常数项,相减即可求出结论.【详解】,令,令,.故答案为:1.【点睛】本题考查展开式系数和,应用赋值法是解题的关键,属于基础题.12.某产品的广告费用x与销售额y的统计数据如下表广告费用(万元)4235销售额(万元)49263954

根据上表可得回归方程中的为9.4,则

.参考答案:9.113.已知过抛物线焦点的直线与抛物线相交于两点,若,则

.参考答案:14.多选题是标准化考试的一种题型,一般是从A、B、C、D四个选项中选出所有正确的答案.在一次考试中有5道多选题,某同学一道都不会,他随机的猜测,则他答对题数的期望值为

.参考答案:略15.已知向量,,若,则

.参考答案:16.若一个钝角三角形的三内角成等差数列,且最大边与最小边之比为m,则实数m的取值范围是

.参考答案:(2,+∞)钝角三角形内角的度数成等差数列,则,可设三个角分别为,故,又,令,且,则,在上是增函数,,故答案为.

17.如图是函数y=f(x)的导函数图象,给出下面四个判断:①f(x)在区间[﹣2,1]上是增函数;②x=﹣1是f(x)的极小值点;③f(x)在区间[﹣1,2]上是增函数,在区间[2,4]上是减函数;④x=1是f(x)的极大值点.其中,判断正确的是.(写出所有正确的编号)参考答案:②③【考点】函数的单调性与导数的关系.【分析】根据函数导数符号和函数单调性的关系,极值的概念,以及在极值点处导数的取值情况即可说明每个判断的正误.【解答】解:①x∈[﹣2,﹣1)时,f′(x)<0;∴f(x)在[﹣2,﹣1)上是减函数;∴该判断错误;②x∈[﹣2,﹣1)时,f′(x)<0;x∈(﹣1,1]时,f′(x)>0;∴x=﹣1是f(x)的极小值点;∴该判断正确;③x∈[﹣1,2]时,f′(x)≥0;x∈[2,4]时,f′(x)≤0;∴f(x)在区间[﹣1,2]上是增函数,在区间[2,4]上是减函数;∴该判断正确;④f′(1)>0,所以x=1不是f(x)的极大值点;∴该判断错误;∴判断正确的是:②③.故答案为:②③.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行分层抽样调查,测得身高情况的统计图如图所示:(1)估计该校男生的人数;(2)估计该校学生身高在170~185cm之间的概率;(3)从样本中身高在180~190cm之间的男生中任选2人,求至少有1人身高在185~190cm之间的概率.参考答案:【考点】频率分布直方图;古典概型及其概率计算公式.【分析】(1)根据频率分布直方图,求出样本中男生人数,再由分层抽样比例,估计全校男生人数;(2)由统计图计算出样本中身高在170~185cm之间的学生数,根据样本数据计算对应的概率;(3)利用列举法计算基本事件数以及对应的概率.【解答】解:(1)根据频率分布直方图,得;样本中男生人数为2+5+14+13+4+2=40,由分层抽样比例为10%,估计全校男生人数为40÷10%=400;(2)由统计图知,样本中身高在170~185cm之间的学生有14+13+4+3+1=35人,样本容量为70,所以样本中学生身高在170~185cm之间的频率为f==0.5,由此估计该校学生身高在170~185cm之间的概率为0.5;(3)样本中身高在180~185cm之间的男生有4人,设其编号为①、②、③、④,样本中身高在185~190cm之间的男生有2人,设其编号为⑤、⑥;从上述6人中任取2人的树状图为:故从样本中身高在180~190cm之间的6名男生中任选2人的所有可能结果数为15,至少有1人身高在185~190cm之间的可能结果数为9,因此,所求概率P==.19.已知椭圆,椭圆以的长轴为短轴,且与有相同的离心率.(1)求椭圆的方程;(2)设为坐标原点,点,分别在椭圆和上,,求直线的方程.参考答案:解:(1)(2)略20.(本小题满分7分)选修4-2:矩阵与变换如图,向量被矩阵M对应的变换作用后分别变成,(Ⅰ)求矩阵M;(Ⅱ)求在作用后的函数解析式.参考答案:(Ⅰ)待定系数设M=求得,……………3分(Ⅱ)在的图象上任取一点,被M作用的点为,代入后得:………7分21.设函数f(x)=mx2﹣mx﹣1.(1)m=时,写出不等式:f()<0的解集;(2)若对于一切实数x,f(x)<0恒成立,求m的取值范围.参考答案:考点:二次函数的性质.专题:函数的性质及应用.分析:(1)当m=时,f(x)=x2﹣x﹣1,令f(x)<0,解得:x∈(﹣1,2),若f()<0,则∈(﹣1,2),进而可得不等式:f()<0的解集;(2)若对于一切实数x,f(x)<0恒成立,分m=0和m≠0两种情况讨论满足条件的m的取值,最后综合讨论结果,可得答案.解答:解:(1)当m=时,f(x)=x2﹣x﹣1,令f(x)<0,即x2﹣x﹣1<0,解得:x∈(﹣1,2),若f()<0,则∈(﹣1,2),解得:x∈点评:本题考查的知识点是二次函数的图象和性质,二次不等式,恒成立问题,是函数与不等式的综合应用,难度中档.22.某公司的广告费支出x与销售额y(单位:万元)之间有下列对应数据x24568y3040605070回归方程为=x+,其中,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论