版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年浙江省宁波市慈溪三山中学高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列函数中,既是偶函数,且在区间内是单调递增的函数是(
)A.
B.
C.
D.
参考答案:D2.已知双曲线的一条渐近线方程为y=x,则双曲线的离心率为(
)A.
B.
C.
D.参考答案:A略3.如图所示,在两个圆盘中,指针在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是
()(A).
(B).
(C).
(D).
参考答案:A略4.已知在等比数列{an}中,a1+a3=10,a4+a6=,则该数列的公比等于(
)A. B. C.2 D.参考答案:A【考点】等比数列的通项公式.【专题】等差数列与等比数列.【分析】由已知得,由此能求出该数列的公比.【解答】解:∵在等比数列{an}中,a1+a3=10,a4+a6=,∴,∴10q3=,解得q=.故选:A.【点评】本题考查等比数列的公式的求法,是基础题,解题时要注意等比数列的性质的合理运用.5.定义方程f(x)=f′(x)的实数根x0叫做函数f(x)的“新驻点”,若函数g(x)=x,h(x)=ln(x+1),φ(x)=x3﹣1的“新驻点”分别为α,β,γ,则α,β,γ的大小关系为()A.α>β>γ B.β>α>γ C.γ>α>β D.β>γ>α参考答案:C【考点】63:导数的运算.【分析】分别对g(x),h(x),φ(x)求导,令g′(x)=g(x),h′(x)=h(x),φ′(x)=φ(x),则它们的根分别为α,β,γ,即α=1,ln(β+1)=,γ3﹣1=3γ2,然后分别讨论β、γ的取值范围即可.【解答】解:∵g′(x)=1,h′(x)=,φ′(x)=3x2,由题意得:α=1,ln(β+1)=,γ3﹣1=3γ2,①∵ln(β+1)=,∴(β+1)β+1=e,当β≥1时,β+1≥2,∴β+1≤<2,∴β<1,这与β≥1矛盾,∴﹣1<β<1;②∵γ3﹣1=3γ2,且γ=0时等式不成立,∴3γ2>0∴γ3>1,∴γ>1.∴γ>α>β.故选C.6.全称命题“所有被5整除的整数都是奇数”的否定
()A.所有被5整除的整数都不是奇数
B.所有奇数都不能被5整除C.存在一个被5整除的整数不是奇数
D.存在一个奇数,不能被5整除参考答案:C7.复数的实部是:A.
2
B.
C.
2+
D.
0参考答案:D略8.下列说法中错误的是()A.垂直于同一条直线的两条直线相互垂直B.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行C.若一个平面经过另一个平面的垂线,那么这两个平面相互垂直D.若一个平面内的两条相交直线与另一个平面内的相交直线分别平行,那么这两个平面相互平行参考答案:A【考点】空间中直线与平面之间的位置关系;空间中直线与直线之间的位置关系.【分析】在A中,垂直于同一条直线的两条直线相交、平行或异面;在B中,由平行公理得这条直线与这两个平面的交线平行;在C中,由面面垂直的判定定理得这两个平面相互垂直;在D中,由面面平行的判定定理得这两个平面相互平行.【解答】解:在A中,垂直于同一条直线的两条直线相交、平行或异面,故A错误;在B中,一条直线平行于两个相交平面,则由平行公理得这条直线与这两个平面的交线平行,故B正确;在C中,若一个平面经过另一个平面的垂线,那么由面面垂直的判定定理得这两个平面相互垂直,故C正确;在D中,若一个平面内的两条相交直线与另一个平面内的相交直线分别平行,那么由面面平行的判定定理得这两个平面相互平行,故D正确.故选:A.【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.9.l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3?l1∥l3B.l1⊥l2,l2∥l3?l1⊥l3C.l1∥l2∥l3?l1,l2,l3共面D.l1,l2,l3共点?l1,l2,l3共面参考答案:B【考点】平面的基本性质及推论;空间中直线与直线之间的位置关系.【分析】通过两条直线垂直的充要条件两条线所成的角为90°;判断出B对;通过举常见的图形中的边、面的关系说明命题错误.【解答】解:对于A,通过常见的图形正方体,从同一个顶点出发的三条棱两两垂直,A错;对于B,∵l1⊥l2,∴l1,l2所成的角是90°,又∵l2∥l3∴l1,l3所成的角是90°∴l1⊥l3,B对;对于C,例如三棱柱中的三侧棱平行,但不共面,故C错;对于D,例如三棱锥的三侧棱共点,但不共面,故D错.故选B.【点评】本题考查两直线垂直的定义、考查判断线面的位置关系时常借助常见图形中的边面的位置关系得到启示.10.若M(x,y)满足,则M的轨迹()A.双曲线 B.直线 C.椭圆 D.圆参考答案:C【考点】轨迹方程.【专题】计算题;转化思想;综合法;圆锥曲线的定义、性质与方程.【分析】由题意,=,可得(x,y)到(2,1)的距离与到直线2x+y﹣4=0的距离的比为,即可得出结论.【解答】解:,可化为=,∴(x,y)到(2,1)的距离与到直线2x+y﹣4=0的距离的比为,利用椭圆的定义,可得轨迹是椭圆.故选:C.【点评】本题考查曲线与方程,考查椭圆的定义,正确变形是关键.二、填空题:本大题共7小题,每小题4分,共28分11.若命题“”是假命题,则的取值范围是__________.参考答案:.【考点】2K:命题的真假判断与应用.【分析】由题意可得对于任意,不等式不成立,即成立.求解不等式得答案.【解答】解:命题“”是假命题,说明对于任意,不等式不成立,即成立.解得.∴的取值范围是.故答案为:.12.若双曲线的右焦点与抛物线的焦点重合,则m=
。参考答案:12略13.已知直线ax+by+c=0与圆:x2+y2=1相交于A、B两点,且,则=
.参考答案:【考点】向量在几何中的应用.【专题】计算题;综合题.【分析】直线与圆有两个交点,知道弦长、半径,不难确定∠AOB的大小,即可求得?的值.【解答】解:依题意可知角∠AOB的一半的正弦值,即sin=所以:∠AOB=120°则?=1×1×cos120°=.故答案为:.【点评】初看题目,会被直线方程所困惑,然而看到题目后面,发现本题容易解答.本题考查平面向量数量积的运算,直线与圆的位置关系.是基础题.14.某厂家为调查一种新推出的产品的颜色接受程度是否与性别有关,数据如下表:
黑红男179女622根据表中的数据,得到,因为,所以产品的颜色接受程度与性别有关系,那么这种判断出错的可能性为__
______;参考答案:略15.已知圆过点A(1,1)和B(2,-2),且圆心在直线x-y+1=0上,求圆的方程
.参考答案:略16.已知复数z1=3+4i,z2=t+i,,且z1?是实数,则实数t等于.参考答案:【考点】复数代数形式的乘除运算.【分析】首先写出复数的共轭复数,再进行复数的乘法运算,写成复数的代数形式的标准形式,根据是一个实数,得到虚部为0,得到关于t的方程,得到结果.【解答】解:∵复数z1=3+4i,z2=t+i,∴z1?=(3t+4)+(4t﹣3)i,∵z1?是实数,∴4t﹣3=0,∴t=.故答案为:17.函数在区间(0,1)内的零点个数是(
)A.0
B.1
C.2
D.3参考答案:B三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(2012?辽宁)在△ABC中,角A、B、C的对边分别为a,b,c.角A,B,C成等差数列.(Ⅰ)求cosB的值;(Ⅱ)边a,b,c成等比数列,求sinAsinC的值.参考答案:;解:(Ⅰ)由2B=A+C,A+B+C=180°,解得B=60°,∴cosB=;…6分(Ⅱ)(解法一)由已知b2=ac,根据正弦定理得sin2B=sinAsinC,又cosB=,∴sinAsinC=1﹣cos2B=…12分(解法二)由已知b2=ac及cosB=,根据余弦定理cosB=解得a=c,∴B=A=C=60°,∴sinAsinC=…12分考点;数列与三角函数的综合.专题;计算题;综合题.分析;(Ⅰ)在△ABC中,由角A,B,C成等差数列可知B=60°,从而可得cosB的值;(Ⅱ)(解法一),由b2=ac,cosB=,结合正弦定理可求得sinAsinC的值;(解法二),由b2=ac,cosB=,根据余弦定理cosB=可求得a=c,从而可得△ABC为等边三角形,从而可求得sinAsinC的值.解答;解:(Ⅰ)由2B=A+C,A+B+C=180°,解得B=60°,∴cosB=;…6分(Ⅱ)(解法一)由已知b2=ac,根据正弦定理得sin2B=sinAsinC,又cosB=,∴sinAsinC=1﹣cos2B=…12分(解法二)由已知b2=ac及cosB=,根据余弦定理cosB=解得a=c,∴B=A=C=60°,∴sinAsinC=…12分点评;本题考查数列与三角函数的综合,着重考查等比数列的性质,考查正弦定理与余弦定理的应用,考查分析转化与运算能力,属于中档题.19.某气象站天气预报的准确率为,计算(结果保留两个有效数字):(1)5次预报中恰有4次准确的概率;(2)5次预报中至少有4次准确的概率参考答案:解:(1)记“预报1次,结果准确”为事件.预报5次相当于5次独立重复试验,根据次独立重复试验中某事件恰好发生次的概率计算公式,5次预报中恰有4次准确的概率答:5次预报中恰有4次准确的概率约为0.41.(2)5次预报中至少有4次准确的概率,就是5次预报中恰有4次准确的概率与5次预报都准确的概率的和,即答:5次预报中至少有4次准确的概率约为0.74.略20.一家公司计划生产某种小型产品的月固定成本为1万元,每生产1万件需要再投入2万元,设该公司一个月内生产该小型产品x万件并全部销售完,每万件的销售收入为4﹣x万元,且每万件国家给予补助2e﹣﹣万元.(e为自然对数的底数,e是一个常数)(Ⅰ)写出月利润f(x)(万元)关于月产量x(万件)的函数解析式(Ⅱ)当月产量在[1,2e]万件时,求该公司在生产这种小型产品中所获得的月利润最大值(万元)及此时的月生成量值(万件).(注:月利润=月销售收入+月国家补助﹣月总成本)参考答案:【考点】6K:导数在最大值、最小值问题中的应用.【分析】(Ⅰ)由月利润=月销售收入+月国家补助﹣月总成本,即可列出函数关系式;(2)利用导数判断函数的单调性,进而求出函数的最大值.【解答】解:(Ⅰ)由于:月利润=月销售收入+月国家补助﹣月总成本,可得(Ⅱ)f(x)=﹣x2+2(e+1)x﹣2elnx﹣2的定义域为[1,2e],且列表如下:x(1,e)e(e,2e]f'(x)+
0﹣f(x)增极大值f(e)
减由上表得:f(x)=﹣x2+2(e+1)x﹣2elnx﹣2在定义域[1,2e]上的最大值为f(e).且f(e)=e2﹣2.即:月生产量在[1,2e]万件时,该公司在生产这种小型产品中所获得的月利润最大值为f(e)=e2﹣2,此时的月生产量值为e(万件).21.(本小题满分10分)如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD底面ABCD,且PD=DC,E是PC的中点,作EFPB交PB于点F.(Ⅰ)证明:PA//平面EDB;(Ⅱ)证明:PB平面EFD;参考答案:证明:(1)连结AC,BD交于点O,连结OE
----------------------------------1分
----------------------------------2分
-----------------------------4分22.在2016年6月英国“脱欧”公投前夕,为了统计该国公民是否有“留欧”意愿, 该国某中学数学兴趣小组随机抽查了50名不同年龄层次的公民,调查统计他们是赞成
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 胆总管结石的治疗
- 小班音乐活动大公鸡
- 《纪地层划分》课件
- 湖北汽车工业学院科技学院《工业设计工程基础》2023-2024学年第一学期期末试卷
- 湖北汽车工业学院《英语听力2》2021-2022学年第一学期期末试卷
- 活动骑行人员合同
- 先天性心脏病卵圆孔未闭
- 湖北科技学院《房屋建筑学》2021-2022学年第一学期期末试卷
- 脑血管病新版
- 重庆市继续教育招投标解析
- 国开电大可编程控制器应用实训形考任务1实训报告
- 2024领导力培训课程ppt完整版含内容
- 森林火灾中的自救与互救课件
- 数据新闻可视化
- 中学生应急救护知识讲座
- ISO9001质量管理体系培训教材
- 纸质文物保护修复的传统及现代技术研究
- 前庭周围性眩晕个案护理
- 帕金森病患者认知功能障碍的评估与处理
- 达州市消防救援支队智能接处警和智能指挥系统暨全国消防
- 银行系统的数字化转型
评论
0/150
提交评论