版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省沈阳市第六十七中学2022年高二数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图,在长方体ABCD-A1B1C1D1中,若AB=BC=1,BB1=2,则异面直线A1B和AD1所成角的余弦值为(
)A. B. C. D.参考答案:D【分析】连结,可证明是平行四边形,则,故的余弦值即为异面直线和所成角的余弦值,利用余弦定理可得结果.【详解】连结,由题得,故是平行四边形,,则的余弦值即为所求,由,可得,,故有,解得,故选D.2.若方程mx2+(m+1)x+m=0有两个不相等的实根,则实数m的取值范围是()A.m>0B.﹣<m<1C.﹣<m<0或0<m<1D.不确定参考答案:C略3.设,,则满足条件,的动点P的变化范围(图中阴影部分含边界)是
(
)参考答案:A4.抛物线的准线方程为(
)A.
B.
C.
D.参考答案:B5.以椭圆+=1的顶点为焦点,焦点为顶点的双曲线C,其左、右焦点分别是F1,F2,已知点M坐标为(2,1),双曲线C上点P(x0,y0)(x0>0,y0>0)满足=,则﹣S()A.2 B.4 C.1 D.﹣1参考答案:A【考点】K4:椭圆的简单性质.【分析】通过已知条件,写出双曲线方程,结合已知等式及平面几何知识得出点M是△F1PF2的内心,利用三角形面积计算公式计算即可.【解答】解:∵椭圆方程为+=1,∴其顶点坐标为(3,0)、(﹣3,0),焦点坐标为(2,0)、(﹣2,0),∴双曲线方程为,设点P(x,y),记F1(﹣3,0),F2(3,0),∵=,∴=,整理得:=5,化简得:5x=12y﹣15,又∵,∴5﹣4y2=20,解得:y=或y=(舍),∴P(3,),∴直线PF1方程为:5x﹣12y+15=0,∴点M到直线PF1的距离d==1,易知点M到x轴、直线PF2的距离都为1,结合平面几何知识可知点M(2,1)就是△F1PF2的内心.故﹣===2,故选:A.6.定义运算=ad﹣bc,则符合条件=0的复数对应的点在()A.第一象限 B.第二象限 C.C第三象限 D.第四象限参考答案:B【考点】复数的代数表示法及其几何意义;复数代数形式的混合运算.【分析】利用新定义可得关于z的等式,然后利用复数代数形式的乘除运算化简,进一步求得得答案.【解答】解:由题意可得:=z(2i)﹣(﹣i)(1+i)=0,即,∴,则复数对应的点的坐标为(),在第二象限.故选:B.7.给出下列说法:①命题“若,则”的否命题是假命题;②命题,使>1,则,≤1;③“”是“函数为偶函数”的充要条件;④命题“,使”,命题“在△ABC中,若>,则A>B”,那么命题为真命题。其中正确的个数是(
)A.4 B.3 C.2 D.1参考答案:B8.“”是“”的
条件.参考答案:充分不必要9.数列是正项等比数列,是等差数列,且,则有(
)A.
B. C.
D.大小不确定参考答案:A10.不等式对恒成立,则的取值范围是 A.
B.
C.
D.参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.设函数表示除以2的余数,表示除以3的余数,则对任意的,给出以下式子:①②③④,其中正确式子的编号为
参考答案:③④略12.将二进制数化为十进制数,结果为__________参考答案:4513.已知实数x,y满足,则目标函数的最大值是 .参考答案:5由约束条件作出可行域如图,联立.化目标函数z=2x﹣y为y=2x﹣z,由图可知,当直线y=2x﹣z过A时,直线在y轴上的截距最小,z有最大值为5.故答案为:5.
14.原点到直线的距离_________________.参考答案:略15.设函数,观察:,,,,根据以上事实,由归纳推理可得:当n∈N+且n≥2时,fn(x)=f(fn﹣1(x))=.参考答案:考点:归纳推理.专题:探究型.分析:题目给出的前四个等式的特点是,左边依次为f1(x),f2(x),f3(x)…,右边都是单项式,且分子都是x,分母是左边的“f”的右下角码乘以x加1,由此规律可得出正确结论.解答: 解:由题目给出的四个等式发现,每一个等式的右边都是一个单项式,分子都是x,分母是等式左边的“f”的右下角码乘以x加1,据此可以归纳为:fn(x)=f(fn﹣1(x))=.故答案为.点评:本题考查了归纳推理,归纳推理是根据已有的事实,经过观察、分析、比较、联想,再进行归纳类比,然后提出猜想的推理,此题是基础题.16.下列集合A到集合B的对应f中:①A={-1,0,1},B={-1,0,1},f:A中的数平方;②A={0,1},B={-1,0,1},f:A中的数开方;③A=Z,B=Q,f:A中的数取倒数;
④A=R,B={正实数},f:A中的数取绝对值,是从集合A到集合B的函数的为________.参考答案:①其中②,由于1的开方数不唯一,因此f不是A到B的函数;其中③,A中的元素0在B中没有对应元素;其中④,A中的元素0在B中没有对应元素.17.若函数的定义域是则函数的定义域是
参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.甲、乙两班进行“一带一路”知识竞赛,每班出3人组成甲、乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错或不答都得0分,已知甲队3人每人答对的概率分别为,乙队每人答对的概率都是,设每人回答正确与否相互之间没有影响,用表示甲队总得分.(1)求的概率;(2)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率.参考答案:(1);(2).【分析】(1)ξ=2,则甲队有两人答对,一人答错,计算得到答案.(2)甲队和乙队得分之和为4,则甲可以得1,2,3分三种情况,计算其概率,再根据条件概率公式得到结果,【详解】(1)ξ=2,则甲队有两人答对,一人答错,故.(2)设甲队和乙队得分之和为4为事件A,甲队比乙队得分高为事件B.设乙队得分为η,则η~
,,,,
,,,∴所求概率为.【点睛】本题考查了概率的计算和条件概率,意在考查学生的计算能力.19.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.(1)证明:PC⊥AD;(2)求二面角A﹣PC﹣D的正弦值;(3)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.参考答案:【考点】用空间向量求平面间的夹角;用空间向量求直线间的夹角、距离;二面角的平面角及求法.【分析】解法一(1)以A为原点,建立空间直角坐标系,通过得出?=0,证出PC⊥AD.(2)求出平面PCD,平面PCD的一个法向量,利用两法向量夹角求解.(3)设E(0,0,h),其中h∈[0,2],利用cos<>=cos30°=,得出关于h的方程求解即可.解法二:(1)通过证明AD⊥平面PAC得出PC⊥AD.(2)作AH⊥PC于点H,连接DH,∠AHD为二面角A﹣PC﹣D的平面角.在RT△DAH中求解(3)因为∠ADC<45°,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF,故∠EBF(或其补角)为异面直线BE与CD所成的角.在△EBF中,因为EF<BE,从而∠EBF=30°,由余弦定理得出关于h的方程求解即可.【解答】解法一:如图,以A为原点,建立空间直角坐标系,则A(0,0,0),D(2,0,0),C(0,1,0),B(﹣,,0),P(0,0,2).(1)证明:易得=(0,1,﹣2),=(2,0,0),于是?=0,所以PC⊥AD.(2)解:=(0,1,﹣2),=(2,﹣1,0),设平面PCD的一个法向量为=(x,y,z),则即取z=1,则以=(1,2,1).又平面PAC的一个法向量为=(1,0,0),于是cos<>==,sin<>=所以二面角A﹣PC﹣D的正弦值为.(3)设E(0,0,h),其中h∈[0,2],由此得=(,﹣,h).由=(2,﹣1,0),故cos<>===所以=cos30°=,解得h=,即AE=.解法二:(1)证明:由PA⊥平面ABCD,可得PA⊥AD,又由AD⊥AC,PA∩AC=A,故AD⊥平面PAC,又PC?平面PAC,所以PC⊥AD.(2)解:如图,作AH⊥PC于点H,连接DH,由PC⊥AD,PC⊥AH,可得PC⊥平面ADH,因此DH⊥PC,从而∠AHD为二面角A﹣PC﹣D的平面角.在RT△PAC中,PA=2,AC=1,所以AH=,由(1)知,AD⊥AH,在RT△DAH中,DH==,因此sin∠AHD==.所以二面角A﹣PC﹣D的正弦值为.(3)解:如图,因为∠ADC<45°,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF,故∠EBF(或其补角)为异面直线BE与CD所成的角.由于BF∥CD,故∠AFB=∠ADC,在RT△DAC中,CD=,sin∠ADC=,故sin∠AFB=.在△AFB中,由,AB=,sin∠FAB=sin135°=,可得BF=,由余弦定理,BF2=AB2+AF2﹣2ABAFcos∠FAB,得出AF=,设AE=h,在RT△EAF中,EF==,在RT△BAE中,BE==,在△EBF中,因为EF<BE,从而∠EBF=30°,由余弦定理得到,cos30°=,解得h=,即AE=.20.数列满足,.(I)求数列的通项公式;(II)记,数列的前项和是,证明:.参考答案:略21.选修4—5:不等式选讲设函数.(Ⅰ)当时,求不等式的解集;(Ⅱ)若对恒成立,求a的取值范围。参考答案:(1)等价于或或,解得或。故不等式的解集为。(2)因为:,所以:。由题意得:,解得或。22.已知函数f(x)=alnx+ax2+bx,(a,b∈R).(1)设a=1,f(x)在x=1处的切线过点(2,6),求b的值;(2)设b=a2+2,求函数f(x)在区间[1,4]上的最大值;(3)定义:一般的,设函数g(x)的定义域为D,若存在x0∈D,使g(x0)=x0成立,则称x0为函数g(x)的不动点.设a>0,试问当函数f(x)有两个不同的不动点时,这两个不动点能否同时也是函数f(x)的极值点?参考答案:【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(1)由题意a=1,f(x)在x=1处的切线过点(2,6),利用导数函数的几何性质求解b的值;(2)b=a2+2,求函数f(x),求其导函数,讨论在区间[1,4]上的最大值;(3)根据函数g(x)的不动点新定义,求其f(x)定义域,当a>0时,g(x0)=x0讨论函数f(x)有两个不同的不动点;同时求函数f(x)的极值点,即可知道两个不动点能否同时也是函数f(x)的极值点.【解答】解:(1)对f(x)进行求导:f'(x)=+2ax+b当a=1时,f(x)=lnx+x2+bx,f'(x)=+2x+b当x=1时,f(1)=1+b,f'(1)=3+b故切线方程为:y﹣(1+b)=(3+b)(x﹣1)点(2,6)满足切线方程,故b=1.(2)由题意,f(x)=alnx+ax2+(a2+2)x,x>0则:f'(x)=+2ax+a2+2=当a=0时,f(x)=2x,f'(x)=2>0,f(x)在[1,4]上为增函数,故最大值为f(4)=8;当a>0时,f'(x)>0,f(x)在x>0上为增函数,故最大值为f(4)=4a2+(16+ln4)a+8;当a<0时,令f'(x)=0,则导函数有两个零点:x1=﹣,x2=﹣.(i)当a<时,∵,∴x1<x2,
f(x)在(0,﹣),(﹣,+∞)上单调递减,在(﹣,﹣)上单调递增;①当﹣<<1<4≤﹣时,即a≤﹣8,此时最大值为f(4)=4a2+(16+ln4)a+8;②当﹣<<1<﹣≤4时,即﹣8≤a<﹣2,此时最大值为f(﹣)=aln(﹣)﹣﹣a;③当<<≤1<4时,即﹣2≤a<﹣,此时最大值为f(1)=a2+a+2;(ii)当a=﹣时,,f'(x)≤0,f(x)在[1,4]上单调递减,最大值为f(1)=4﹣;(iii)当﹣<a<0时,,∴x1>x2f(x)在(0,﹣),(﹣,+∞)上单调递减,(﹣,﹣)上单调递增;①当时,即≤a<0,最大值为f(4)=4a2+(16+ln4)a+8;②当﹣<<1<﹣≤4时,即﹣1<a≤,最大值为f(﹣)=aln(﹣)﹣a﹣;③当﹣<<﹣≤1<4时,即﹣<a≤﹣1,最大值为f(1)=a2+a+2;(3)由题意知:f(x)=?由①②化简后:alnx﹣a﹣ax2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 禁毒防艾知识培训课件
- 2024物流金融保理服务合同
- 个人咨询合同合同:专业指导服务明细版B版
- 2025年度耕地复垦与农村土地经营权流转合同
- 2025年度咖啡厅及西餐厅整体转让合同
- 2025年度中小企业创业贷款合同签订与创业培训服务
- 二零二五年度出租车租赁合同司机福利及待遇协议
- 二零二五年度银行房产抵押消费金融创新合同
- 二零二五年度水费征收与水资源优化配置合同
- 2025年度版个人雇佣合同协议书:旅游行业导游及领队人员雇佣协议
- 电梯曳引机生锈处理方案
- 电力电缆故障分析报告
- 中国电信网络资源管理系统介绍
- 2024年浙江首考高考选考技术试卷试题真题(答案详解)
- 《品牌形象设计》课件
- 仓库管理基础知识培训课件1
- 药品的收货与验收培训课件
- GH-T 1388-2022 脱水大蒜标准规范
- 高中英语人教版必修第一二册语境记单词清单
- 政府机关保洁服务投标方案(技术方案)
- HIV感染者合并慢性肾病的治疗指南
评论
0/150
提交评论