版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省新乡市卫辉第八中学高三数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数若a<b<c,且f(a)=f(b)=f(c),则的取值范围是(
)A.(4,13) B.(8,9) C.(23,27) D.(13,15)参考答案:D【考点】简单线性规划.【专题】不等式的解法及应用.【分析】画出图象得出当f(a)=f(b)=f(c),a<b<c时,0<a<1<b<c<12,ab=1,化简3ab+=3+c,即可求解范围解:函数,f(a)=f(b)=f(c),a<b<c,∴0<a<1<b<c<12,ab=1,∴3ab+=3+c,13<3+c<15,故选:D.【点评】本题考查了函数的性质,运用图象得出a,b,c的范围,关键是得出ab=1,代数式的化简,不等式的运用,属于中档题2.已知集合,若对于任意,存在,使得成立,则称集合是“集合”.给出下列4个集合:①
②
③
④其中所有“集合”的序号是……………………(
)(A)②③.
(B)③④.
(C)①②④.
(D)①③④.参考答案:A略3.抛物线y2=2px(p>0)的焦点为F,准线为L,A、B是抛物线上的两个动点,且满足∠AFB=.设线段AB的中点M在L上的投影为N,则的最大值是(
)A.B.1 C. D.参考答案:B【分析】设|AF|=a,|BF|=b,连接AF、BF.由抛物线定义得2|MN|=a+b,由余弦定理可得|AB|2=(a+b)2﹣3ab,进而根据基本不等式,求得|AB|的取值范围,从而得到本题答案.【解答】解:设|AF|=a,|BF|=b,连接AF、BF,由抛物线定义,得|AF|=|AQ|,|BF|=|BP|,在梯形ABPQ中,2|MN|=|AQ|+|BP|=a+b.由余弦定理得,|AB|2=a2+b2﹣2abcos60°=a2+b2﹣ab,配方得,|AB|2=(a+b)2﹣3ab,又∵ab≤()2,∴(a+b)2﹣3ab≥(a+b)2﹣(a+b)2=(a+b)2得到|AB|≥(a+b).∴≤1,即的最大值为1.故选:B.【点评】本题给出抛物线的弦AB对焦点F所张的角为直角,求AB中点M到准线的距离与AB比值的取值范围,着重考查了抛物线的定义与简单几何性质、梯形的中位线定理和基本不等式求最值等知识,属于中档题.
4.如图,在平行四边形ABCD中,∠BAD=,AB=2,AD=1,若M、N分别是边AD、CD上的点,且满足==λ,其中λ∈[0,1],则?的取值范围是()A.[﹣3,1] B.[﹣3,﹣1] C.[﹣1,1] D.[1,3]参考答案:B【考点】9R:平面向量数量积的运算.【分析】画出图形,建立直角坐标系,求出B,A,D的坐标,利用比例关系和向量的运算求出,的坐标,然后通过二次函数的单调性,求出数量积的范围.【解答】解:建立如图所示的以A为原点,AB,AD所在直线为x,y轴的直角坐标系,则B(2,0),A(0,0),D(,).∵满足==λ,λ∈[0,1],=+=+(1﹣λ)=+(1﹣λ)=(,)+(1﹣λ)(2,0)=(﹣2λ,);=+=﹣+(1﹣λ)=(﹣2,0)+(1﹣λ)(,)=(﹣﹣λ,(1﹣λ)),则?=(﹣2λ,)?(﹣﹣λ,(1﹣λ))=(﹣2λ)(﹣﹣λ)+?(1﹣λ)=λ2+λ﹣3=(λ+)2﹣,因为λ∈[0,1],二次函数的对称轴为:λ=﹣,则[0,1]为增区间,故当λ∈[0,1]时,λ2+λ﹣3∈[﹣3,﹣1].故选:B.5.设是展开式的中间项,若在区间上恒成立,则实数的取值范围是(
)
A.
B.
C.
D.参考答案:D略6.若函数f(x)=ex+x2﹣ax在区间(0,+∞)上存在减区间,则实数a的取值范围是()A.(﹣∞,+∞) B.(1,+∞) C.(0,+∞) D.(2,+∞)参考答案:B【考点】利用导数研究函数的单调性.【专题】计算题;导数的综合应用.【分析】求导f′(x)=ex+2x﹣a,从而可得f′(x)=ex+2x﹣a<0在区间(0,+∞)上有解,再由其单调性确定答案即可.【解答】解:∵f(x)=ex+x2﹣ax,∴f′(x)=ex+2x﹣a;∵函数f(x)=ex+x2﹣ax在区间(0,+∞)上存在减区间,∴f′(x)=ex+2x﹣a<0在区间(0,+∞)上有解,又∵f′(x)=ex+2x﹣a在(0,+∞)上是增函数,∴f′(0)=e0+2?0﹣a=1﹣a<0,∴a>1;故选:B.【点评】本题考查了导数的综合应用及存在性问题的应用.7.函数有最小值,则实数的取值范围是
(
)A.
B.
C.
D.参考答案:B8.若不等式≥对一切都成立,则的最小值为
(
)
参考答案:C9.若为不等式组表示的平面区域,则当的值从连续变化到时,动直线扫过的中的那部分区域的面积为
.参考答案:略10.为了得到函数的图象,只需将函数的图象(
)
A.向左平移个单位长度
B.向右平移个单位长度
C.向左平移1个单位长度
D.向右平移1个单位长度
参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.已知双曲正弦函数shx=和双曲余弦函数chx=与我们学过的正弦函数和余弦函数有许多类似的性质,请类比正弦函数和余弦函数的和角公式,写出双曲正弦或双曲余弦函数的一个类似的正确结论_________.参考答案:12.已知向量=(1,3),=(﹣2,m),若与垂直,则m的值为.参考答案:﹣1【考点】数量积判断两个平面向量的垂直关系.【专题】平面向量及应用.【分析】运用向量的数乘及加法运算求出向量,然后再由垂直向量的数量积为0列式求解m的值.【解答】解:由=(1,3),=(﹣2,m),所以,又由与垂直,所以1×(﹣3)+3×(2m+3)=0,即m=﹣1.故答案为﹣1.【点评】本题考查向量的数量积判断两个向量的垂直关系,考查计算能力,是基础题.13.已知函数有两个极值,则实数a的取值范围为.参考答案:a≤﹣2【考点】利用导数研究函数的极值.【分析】由原函数有两个极值,可知其导函数有两个不同的实数根,转化为直线y=﹣ax﹣a与曲线y=2ex有两个不同交点求解.【解答】解:由,得f′(x)=2ex+ax+a,要使有两个极值,则方程2ex+ax+a=0有两个不同的实数根,即2ex=﹣ax﹣a有两个不同的实数根,令y=2ex,y=﹣ax﹣a,直线y=﹣a(x+1)过点(﹣1,0),设直线y=﹣a(x+1)与y=2ex的切点为(),则y′=,则切线方程为,代入(﹣1,0),得,解得:x0=0.∴切点为(0,2),则过(﹣1,0),(0,2)切线的斜率为k=,由﹣a≥2,得a≤﹣2.∴实数a的取值范围为a≤﹣2.故答案为:a≤﹣2.14.已知命题P:[0,l],,命题q:“R,x2+4x+a=0”,若命题“p∧q”是真命题,则实数a的取值范围是
;参考答案:
15.若直线的圆心,则的最小值是________________参考答案:1616.已知i是虚数单位,且满足i2=﹣1,a∈R,复数z=(a﹣2i)(1+i)在复平面内对应的点为M,则“a=1”是“点M在第四象限”的条件(选填“充分而不必要”“必要而不充分”“充要”“既不充分又不必要”)参考答案:充分不必要【考点】必要条件、充分条件与充要条件的判断.【专题】简易逻辑.【分析】把复数的表示形式写成标准形式,根据复数在第四象限,得到复数的坐标所满足的条件,横标大于零,纵标小于零,得到a的取值范围,得到结果.【解答】解:∵复数z=(a﹣2i)(1+i)=a+2+(a﹣2)i,∴在复平面内对应的点M的坐标是(a+2,a﹣2),若点在第四象限则a+2>0,a﹣2<0,∴﹣2<a<2,∴“a=1”是“点M在第四象限”的充分不必要条件,故答案为:充分不必要.【点评】本题考查条件问题,考查复数的代数表示法及其几何意义,考查各个象限的点的坐标特点,本题是一个基础题.17.设数列满足,,则
参考答案:13三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题12分)某公司计划在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元.甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟.甲、乙两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为0.3万元和0.2万元.设该公司在甲、乙两个电视台做广告的时间分别为x分钟和y分钟.(Ⅰ)用x,y列出满足条件的数学关系式,并画出相应的平面区域;(Ⅱ)该公司如何分配在甲、乙两个电视台做广告的时间使公司的收益最大,并求出最大收益是多少?参考答案:解:(I)设该公司在甲、乙两个电视台做广告的时间分别为分钟和分钟,则,满足的数学关系式为该二次元不等式组等价于做出二元一次不等式组所表示的平面区域(II)设公司的收益为元,则目标函数为:考虑,将它变形为.这是斜率为,随变化的一族平行直线,当截距最大,即最大.又因为满足约束条件,所以由图可知,当直线经过可行域上的点时,截距最大,即最大.解方程组得,代入目标函数得.答:该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告使公司的收益最大,最大收益是70万元.
19.设f(x)=px﹣﹣2lnx.(Ⅰ)若f(x)在其定义域内为单调递增函数,求实数p的取值范围;(Ⅱ)设g(x)=,且p>0,若在[1,e]上至少存在一点x0,使得f(x0)>g(x0)成立,求实数p的取值范围.参考答案:【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(I)由f(x)=px﹣﹣2lnx,得=.由px2﹣2x+p≥0在(0,+∞)内恒成立,能求出P的范围.(II)法1:g(x)=在[1,e]上是减函数,所以g(x)∈[2,2e].原命题等价于[f(x)]max>[g(x)]min=2,x∈[1,e],由,解得p>,由此能求出p的取值范围.法2:原命题等价于f(x)﹣g(x)>0在[1,e)上有解,设F(x)=f(x)﹣g(x)=px﹣﹣2lnx﹣,由=,知F(x)是增函数,由[F(x)]max=F(e)>0,能求出p的取值范围.【解答】解:(I)由f(x)=px﹣﹣2lnx,得=.…要使f(x)在其定义域(0,+∞)内为单调增函数,只需f′(x)≥0,即px2﹣2x+p≥0在(0,+∞)内恒成立,…从而P≥1.…(II)解法1:g(x)=在[1,e]上是减函数,所以[g(x)]min=g(e)=2,[g(x)]max=g(1)=2e,即g(x)∈[2,2e].当0<p<1时,由x∈[1,e],得x﹣,故,不合题意.…当P≥1时,由(I)知f(x)在[1,e]连续递增,f(1)=0<2,又g(x)在[1,e]上是减函数,∴原命题等价于[f(x)]max>[g(x)]min=2,x∈[1,e],…由,解得p>,综上,p的取值范围是(,+∞).…解法2:原命题等价于f(x)﹣g(x)>0在[1,e)上有解,设F(x)=f(x)﹣g(x)=px﹣﹣2lnx﹣,∵=,∴F(x)是增函数,…∴[F(x)]max=F(e)>0,解得p>,∴p的取值范围是(,+∞).…20.已知a∈R,函数f(x)=x3﹣ax2+ax+a,g(x)=f(x)+(a﹣3)x.(1)求证:曲线y=f(x)在点(1,f(1))处的切线过点(2,4);(2)若g(1)是g(x)在区间(0,3]上的极大值,但不是最大值,求实数a的取值范围.参考答案:【考点】利用导数研究函数的极值;利用导数研究曲线上某点切线方程.【分析】(1)求出函数的导数,计算f′(1),f(1),求出求出方程,从而求出定点即可;(2)求出g(x)的导数,根据g(1)是g(x)在区间(0,3]上的极大值,不是最大值,得到关于a的不等式,解出即可.【解答】(1)证明:∵f'(x)=3x2﹣2ax+a,∴f'(1)=3﹣a,∵f(1)=a+1,∴曲线y=f(x)在点(1,f(1))处的切线方程为y﹣(a+1)=(3﹣a)(x﹣1),即a(x﹣2)=3x﹣y﹣2,令x=2,则y=4,故曲线y=f(x)在点(1,f(1))处的切线过定点(2,4);(2)解:g'(x)=f'(x)+a﹣3=3x2﹣2ax+2a﹣3=(x﹣1)[3x﹣(2a﹣3)],令g'(x)=0得x=1或x=,∵g(1)是g(x)在区间(0,3]上的极大值,∴>1,∴a>3,令g'(x)>0,得x<1或x>,g(x)递增;令g'(x)<0,得1<x<,g(x)递减,∵g(1)不是g(x)在区间(0,3]上的最大值,∴g(x)在区间(0,3]上的最大值为g(3)=18﹣2a,∴g(3)=18﹣2a>g(1)=2a﹣2,∴a<5,又a>3,∴3<a<5.【点评】本题考查了函数的单调性、极值、最值问题,考查导数的应用,是一道中档题.21.(本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工作总结之道桥测量实习总结
- 电工电子技术(第3版) 课件 2.2.2 RLC串联交流电路
- 2024年木聚糖酶项目资金申请报告代可行性研究报告
- 学校德育处工作总结3篇
- 银行保密工作规定制度
- 《设备安装施工工艺》课件
- 设计规划与设计管理的区别及案例分析
- 广西武鸣高中2025届高考数学必刷试卷含解析
- 汕头市2025届高三压轴卷数学试卷含解析
- 2025届广东省肇庆市怀集中学高考数学考前最后一卷预测卷含解析
- 逻辑学导论学习通超星期末考试答案章节答案2024年
- 2024年中国分布式光伏高质量发展-探讨山东和江苏的先锋作用研究报告
- 教育统计自查报告范文(31篇)
- 产教融合项目合同5篇
- 期末 (试题) -2024-2025学年外研版(三起)(2024)英语三年级上册
- 第三单元 角的度量(单元测试)-2024-2025学年四年级上册数学人教版
- 第七单元测试卷-2024-2025学年统编版语文三年级上册
- 高考志愿填报师资格新版考试题及答案
- 小红书种草营销师单选模拟题
- 山哥茶妹IP主题民宿文旅项目定位规划策划案
- 农业面源污染防治与生态修复方案
评论
0/150
提交评论