湖南省常德市谢家铺镇联校高二数学理下学期期末试卷含解析_第1页
湖南省常德市谢家铺镇联校高二数学理下学期期末试卷含解析_第2页
湖南省常德市谢家铺镇联校高二数学理下学期期末试卷含解析_第3页
湖南省常德市谢家铺镇联校高二数学理下学期期末试卷含解析_第4页
湖南省常德市谢家铺镇联校高二数学理下学期期末试卷含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省常德市谢家铺镇联校高二数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.方程x3-6x2+9x-10=0的实根个数是(

)A.3

B.2

C.1

D.0参考答案:C2.如图是一容量为100的样本的重量的频率分布直方图,则由图可估计样本的平均重量为()A.13 B.12 C.11 D.10参考答案:B【考点】频率分布直方图.【分析】根据频率和为1,求出小组15~20的频率,再求样本数据的平均值即可.【解答】解:根据频率分布直方图,得;小组15~20的频率是(1﹣0.06+0.1)×5=0.2,∴样本数据的平均值是7.5×0.3+12.5×0.5+17.5×0.2=12.故选:B.【点评】本题考查了利用频率分布直方图求数据的平均值的应用问题,是基础题目.3.双曲线的实轴长和虚轴长分别是(

)A.,4

B.4,

C.3,4

D.2,参考答案:A4.某四面体的三视图如图所示,该四面体四个面的面积中最大的是(

)A.8

B.10

C.6

D.8参考答案:B略5.已知双曲线的左顶点为A1,右焦点为F2,P为双曲线右支上一点,则的最小值为(

)A.-2

B.

C.1

D.0参考答案:A6..若的值等于A.2

B.1

C.0

D.2参考答案:A略7.在复平面内,复数对应的点与原点的距离是(

)

A.l

B.

C.2

D.2参考答案:B略8.若质点A按规律s=2t2运动,则质点A在t=1时的瞬时速度是()A. B.2 C. D.4参考答案:D【考点】变化的快慢与变化率.【分析】由已知中质点按规律S=2t2运动,我们易求出s′,即质点运动的瞬时速度表达式,将t=1代入s′的表达式中,即可得到答案.【解答】解:∵质点按规律S=2t2运动,∴s′=4t∵s′|t=1=4×1=4.∴质点在1s时的瞬时速度为4.故选:D.9.函数,已知在时取得极值,则的值为(A)0

(B)1

(C)0和1

(D)以上都不正确参考答案:B10.设变量满足约束条件,则目标函数的取值范围是(

A.

B.

C.

D.参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.已知集合,集合,则

.参考答案:略12.若x,y,z满足约束条件,则的最小值为__________.参考答案:【分析】画出满足条件的平面区域,结合的几何意义以及点到直线的距离求出的最小值即可.【详解】画出,,满足约束条件,的平面区域,如图所示:而的几何意义表示平面区域内的点到点的距离,显然到直线的距离是最小值,由,得最小值是,故答案为.【点睛】本题主要考查了简单的线性规划问题,考查数形结合思想,属于中档题.13.已知直线(,则直线一定通过定点

参考答案:略14.如图,平面中两条直线l1和l2相交于点O,对于平面上任意一点M,若x,y分别是M到直线l1和l2的距离,则称有序非负实数对(x,y)是点M的“距离坐标”。已知常数p≥0,q≥0,给出下列三个命题:①若p=q=0,则“距离坐标”为(0,0)的点有且只有1个;②若pq=0,且p+q≠0,则“距离坐标”为(p,q)的点有且只有2个;③若pq≠0则“距离坐标”为(p,q)的点有且只有4个.上述命题中,正确命题的是

(写出所有正确命题的序号)参考答案:①③略15.参考答案:7略16.已知直线l、m,平面α、β且l⊥α,mβ给出下列四个命题,其中正确的是①若α∥β则l⊥m

②若α⊥β则l∥m

③若l⊥m则α∥β④若l∥m则α⊥β参考答案:①④17.已知三棱柱的侧棱与底面垂直,体积为,底面是边长为的正三角形.若为底面的中心,则与平面所成的角的大小为 .参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知a>0,b>0且+=1,(1)求ab最小值;(2)求a+b的最小值.参考答案:【考点】基本不等式.【分析】(1)由条件和基本不等式求出ab最小值;(2)由条件和“1”的代换化简a+b,由基本不等式求出a+b的最小值.【解答】解:(1)∵a>0,b>0且+=1,∴≥=,则,即ab≥8,当且仅当时取等号,∴ab的最小值是8;(2)∵a>0,b>0且+=1,∴a+b=()(a+b)=3+≥3+=,当且仅当时取等号,∴a+b的最小值是.19.(本小题满分14分)已知函数且

(I)试用含的代数式表示;

(Ⅱ)求的单调区间;(Ⅲ)令,设函数在处取得极值,记点,证明:线段与曲线存在异于、的公共点。参考答案:解:(I)依题意,得

由得(Ⅱ)由(I)得

令=0,则或

①当时,

当变化时,与的变化情况如下表:+—+单调递增单调递减单调递增由此得,函数的单调增区间为和,单调减区间为②由时,,此时,恒成立,且仅在处,故函数的单调区间为R③当时,,同理可得函数的单调增区间为和,单调减区间为综上:当时,函数的单调增区间为和,单调减区间为;当时,函数的单调增区间为R;当时,函数的单调增区间为和,单调减区间为略20.给出如下一个算法:第一步:输入x;第二步:若x>0,则y=2x2﹣1,否则执行第三步;第三步:若x=0,则y=1,否则y=2|x|;第四步:输出y.(1)画出该算法的程序框图;(2)若输出y的值为1,求输入实数x的所有可能的取值.参考答案:【考点】程序框图.【专题】作图题;阅读型;分类讨论;数形结合法;算法和程序框图.【分析】(1)根据算法画出程序框图即可.(2)根据算法有:由y=2x2﹣1=1,可得x=1或﹣1(舍去).由y=2|x|=1可得x=﹣或x=(舍去),由x=0可得y=1,从而得解.【解答】解:(1)程序框图如下:…5分(2)当x>0时,由y=2x2﹣1=1,可得x=1或﹣1(舍去).当x<0时,由y=2|x|=1可得x=﹣或x=(舍去),当x=0时,由x=0可得y=1.所以输入实数x的所有可能的取值为1,﹣,0.…10分【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.21.已知函数f(x)=lnx.(1)求函数g(x)=f(x+1)﹣x的最大值;(2)若对任意x>0,不等式f(x)≤ax≤x2+1恒成立,求实数a的取值范围;(3)若x1>x2>0,求证:>.参考答案:【考点】导数在最大值、最小值问题中的应用.【分析】(1)先求出g(x)=ln(x﹣1)﹣x(x>﹣1),然后求导确定单调区间,极值,最值即可求.(2)本小题转化为在x>0上恒成立,进一步转化为,然后构造函数h(x)=,利用导数研究出h(x)的最大值,再利用基础不等式可知,从而可知a的取值范围.(3)本小题等价于.令t=,设u(t)=lnt﹣,t>1,由导数性质求出u(t)>u(1)=0,由此能够证明>.【解答】解:(1)∵f(x)=lnx,∴g(x)=f(x+1)﹣x=ln(x+1)﹣x,x>﹣1,∴.当x∈(﹣1,0)时,g′(x)>0,∴g(x)在(﹣1,0)上单调递增;当x∈(0,+∞)时,g′(x)<0,则g(x)在(0,+∞)上单调递减,∴g(x)在x=0处取得最大值g(0)=0.(2)∵对任意x>0,不等式f(x)≤ax≤x2+1恒成立,∴在x>0上恒成立,进一步转化为,设h(x)=,则,当x∈(1,e)时,h′(x)>0;当x∈(e,+∞)时,h′(x)<0,∴h(x).要使f(x)≤ax恒成立,必须a.另一方面,当x>0时,x+,要使ax≤x2+1恒成立,必须a≤2,∴满足条件的a的取值范围是[,2].(3)当x1>x2>0时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论