纯金属的凝固_第1页
纯金属的凝固_第2页
纯金属的凝固_第3页
纯金属的凝固_第4页
纯金属的凝固_第5页
已阅读5页,还剩39页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

纯金属的凝固第1页,课件共47页,创作于2023年2月第3章纯金属的凝固3.1纯金属的结晶过程3.2结晶的热力学条件3.3形核规律3.4长大规律3.5结晶理论的某些实际应用小结思考题

由液相至固相的转变称为凝固,凝固后的固体是晶体,又称为结晶。2023/7/18第2页,课件共47页,创作于2023年2月

如图所示,液态金属的结构介于气体(短程无序)和晶体(长程有序)之间,即长程无序、短程有序。液态金属中存在许多微小的规则排列的原子集团,称为“近程规则排列”。1.液态金属的结构3.1纯金属的结晶过程2023/7/18第3页,课件共47页,创作于2023年2月

每一瞬间都出现大量尺寸不同的结构起伏,所以过冷液态中的结构起伏,是固态晶核的胚芽,称为晶胚。晶胚达到一定尺寸,能稳定成长而不在消失,称为晶核。

结晶的实质:就是从近程规则排列的液体变成远程规则排列的固体过程。而实现这个过程靠形核和长大两个过程交错重叠组合而完成。

液态金属中处于时而形成、时而消失、不断变化的“近程规则排列”的原子集团,称为结构起伏。2023/7/18第4页,课件共47页,创作于2023年2月2.纯金属的结晶过程结晶:是晶体在液相中从无到有,由小变大的过程。从无到有可看作是晶体由“胚胎”到“出生”的过程,称为生核;由小变大可以看作是晶体出生后的成长过程,叫长大。结晶过程可描述如下:

结晶的一般过程是由形核和长大两个过程交错重叠组合而成的过程。2023/7/18第5页,课件共47页,创作于2023年2月

图3.2纯金属的冷却曲线

Tm—理论结晶温度(熔点)Tn—实际结晶温度由图可见:开始T↓,到Tm并不结晶,而到Tn才开始结晶,结晶中放出结晶潜热补偿了冷却时散失的热量,使T不变,曲线上出现“平台”,结晶完毕后,T又随τ↑而↓。

1.结晶的过冷现象3.2结晶的热力学条件2023/7/18第6页,课件共47页,创作于2023年2月金属的Tn总低于Tm这种现象,叫过冷现象。金属的实际结晶温度(Tn)与理论结晶温度(Tm)之差,称为过冷度,用ΔT表示。ΔT=Tm—TnΔT不是恒定不变的,它取决于:

a.金属的纯度↑,ΔT↑;

b.冷却速度↑,Tn↓,ΔT↑。可见,过冷是金属结晶的必要条件(不过冷就不能结晶)。2023/7/18第7页,课件共47页,创作于2023年2月

GL,GS随T↑而↓,但GL↓>GS↓,相交,交点对应的温度就是Tm。图3.3液、固相自由能随T变化曲线

2.结晶的热力学条件2023/7/18第8页,课件共47页,创作于2023年2月

讨论:当T=Tm时,GL=GS,动态平衡,不熔化也不结晶;

当T>Tm时,GL<GS,L稳定,发生熔化;当T<Tm时,GL>GS,S稳定,发生结晶。可见,结晶的热力学条件是:

GS<GL或ΔG=GS-GL<0

满足此条件要有ΔT,ΔT↑,ΔG↑。ΔT—是结晶的必要条件(外因)

ΔG—是结晶的驱动力(内因)2023/7/18第9页,课件共47页,创作于2023年2月3.3

形核规律

结晶条件不同,会出现两种不同的形核方式:均匀形核:新相晶核是在母相中均匀生成,不受杂质粒子的影响。非均匀形核:新相优先在母相中存在的杂质处形核。

实际金属的结晶多以非均匀形核为主,但研究均匀形核可以从本质上揭示形核规律,而且这种规律又适用于非均匀形核。2023/7/18第10页,课件共47页,创作于2023年2月1.均匀形核

金属晶核从过冷液相中以结构起伏为基础直接涌现自发形成,这种方式为均匀形核。(1)形核时的能量变化在过冷液态金属中以结构起伏为基础,先形成晶胚,晶胚能否形成晶核,由两方面的自由能变化所决定:1)L→S体积自由能降低:ΔGVL-S是结晶的驱动力。2)S形成出现新的表面,使表面自由能增加:ΔGA是结晶的阻力。2023/7/18第11页,课件共47页,创作于2023年2月

ΔG=πr3ΔGV+4πr2σ两者之和就是:出现一个晶胚时总的自由能变化,用ΔG表示。

ΔG=ΔGVL-S+ΔGA

=VΔGV+A·σΔGV—单位体积的L→S相自由能差

ΔGV=GS—GL<0

σ—单位面积的表面能。

在一定温度下ΔGV、σ是确定值,所以设晶胚为球形,半径为r,则ΔG是r的函数:2023/7/18第12页,课件共47页,创作于2023年2月

可见,ΔG随r的变化曲线有一最大值,用ΔG*表示。与ΔG*相对应的晶胚半径称为临界晶核半径,用r*表示。ΔG=0的晶核半径用r0表示。图3.4ΔG随r的变化曲线

ΔG=πr3ΔGV+4πr2σ2023/7/18第13页,课件共47页,创作于2023年2月分析ΔG—r曲线:

1)r<r*的晶胚因为一切自发过程都朝着ΔG↓的方向进行,r<r*的晶胚长大,使ΔG↑,只有重新熔化才能使ΔG↓。这种尺寸的晶胚不稳定,瞬时出现,又瞬时消失,不能长大。2)r>r*的晶胚因为长大,使ΔG↓能自发进行。所以一旦出现,不在消失,能长大成为晶核。当r>r0时,因为ΔG<0为稳定晶核。当r在r*~r0之间时,长大使ΔG↓但ΔG>0,为亚稳定晶核。2023/7/18第14页,课件共47页,创作于2023年2月3)r=r*的晶胚

长大与消失的趋势相等,这种晶胚称为临界晶核。r*

为临界晶核半径。

可见,在过冷液体中,不是所有的晶胚都能成为稳定晶核,只有达到临界半径的晶胚才可能成为晶核。2023/7/18第15页,课件共47页,创作于2023年2月∵r*→

ΔG*∴有(2)求r*的大小(用求最大值法)ΔG=πr3ΔGV+4πr2σ求导

4πr2ΔGV+8πrσ=04πr*2ΔGV+8πr*σ=02023/7/18第16页,课件共47页,创作于2023年2月

经研究表明:T对σ影响甚微,所以认为σ与ΔT无关。但ΔT对ΔGV的影响很大。由L、S相G随T的变化曲线可以看出:ΔGV为ΔT的函数,并可证明它们之间有如下关系:

Tm—理论结晶温度(熔点);

Lm—单位体积的结晶潜热。2023/7/18第17页,课件共47页,创作于2023年2月将ΔGV代入r*中得:

可见,r*与ΔT成反比,即ΔT↑,r*↓,见图3.5,r*—ΔT关系曲线。但过冷液体中各种尺寸的晶胚分布也随ΔT变化,ΔT↑晶胚分布中最大尺寸的晶胚半径rmax↑,见图3.6,rmax—ΔT关系曲线。2023/7/18第18页,课件共47页,创作于2023年2月图3.5r*—ΔT关系曲线图3.6rmax—ΔT关系曲线

2023/7/18第19页,课件共47页,创作于2023年2月两条曲线的交点所对应的过冷度ΔT*为临界过冷度。(结晶可能开始进行的最小过冷度)。大小:

ΔT*=0.2Tm

(K)r*、rmax—ΔT关系曲线

当ΔT<ΔT*时,rmax<r*,难于形核,结晶不能进行。当ΔT=ΔT*时,rmax=r*,晶胚可能转变为晶核。当ΔT>ΔT*时,rmax>r*,结晶易于进行。两图结合得下图:2023/7/18第20页,课件共47页,创作于2023年2月(3)形核功

由ΔG--r曲线可知:在r>r*时,长大使ΔG↓,但在r*与r0之间,ΔG为正值。说明,ΔGVL-S↓还不能完全补偿ΔGA↑,还需要提供一定的能量。这部分为形核而提供的能量叫形核功。

形成临界晶核所需要的能量称为临界形核功。数值上等于ΔG*

。将代入

A*

为临界晶核的表面积2023/7/18第21页,课件共47页,创作于2023年2月可见:形成临界晶核时,体积自由能ΔGVL-S↓只能补偿2/3表面能ΔGA↑,还有1/3的表面能必须由系统的能量起伏来提供。能量起伏:系统能量是各小体积能量的平均值,是一定的。各小体积能量并不相等,有的高、有的低,总是在变化之中。系统中各微小体积的能量偏离系统平均能量的现象,称为能量起伏。总之,均匀形核是在过冷液相中靠结构起伏和能量起伏来实现的。

2023/7/18第22页,课件共47页,创作于2023年2月(4)形核率N单位时间、单位体积液相中形成的晶核数目(晶核数目/cm3•s)。

N对于实际生产非常重要,N高意味着单位体积内的晶核数目多,结晶结束后可以获得细小晶粒的金属材料,这种金属材料不但强度高,塑性、韧性也好。形核率受两个因素控制:2023/7/18第23页,课件共47页,创作于2023年2月

N1—为受形核功影响的形核率因子。随T↑,ΔT↓,ΔG*↑,N1↓。N2—受原子扩散能力影响的形核率因子。随T↑,原子扩散能力↑,N2↑。

N是N1、N2

的综合,曲线上出现极大值。即T高时,由形核功控制;T低时,受原子扩散能力的控制;只有T适当,N1、N2均较大时,出现极大值。

2023/7/18第24页,课件共47页,创作于2023年2月对纯金属,均匀形核的形核率与ΔT的关系见下图。可见,在到达一定的过冷度之前,液态金属中基本不形核,一但温度降至某一温度时,N急增。由于一般金属的晶体结构简单,凝固倾向大,在达到曲线的极大值之前早已凝固完毕,所以看不到曲线的下降部分。2023/7/18第25页,课件共47页,创作于2023年2月2.非均匀形核

依附在已存在于液相中的固态现成界面或容器表面上形核的方式。

非均匀形核规律和均匀形核基本相同,所不同的是:依附于固态现成表面上形核,界面能↓,结晶阻力↓,所需的形核功小了。

在现成的基底上形成一个晶核时其能量变化,然后再计算非均匀形核的r*和形核功。2023/7/18第26页,课件共47页,创作于2023年2月图3.6非均匀形核示意图

设液相L中有杂质颗粒w,在其表面形成晶核α,晶核为球冠状,曲率半径为r。

当晶核稳定存在时,三种表面张力在交点处达到平衡:

σLW=σαW+σαLcosθ2023/7/18第27页,课件共47页,创作于2023年2月准备工作:

球冠体积:Vα=πr3(2–3cosθ+cos3θ)晶核与液体的接触面积:AαL=2πr2(1-cosθ)晶体与杂质的接触面积:AαW=πr2sin2θ

θ--晶核与基底接触角,称湿润角。

σαl—晶核与液相之间的表面能。

σαw—晶核与基底之间的表面能。

σlw—液相与基底之间的表面能。σLW=σαW+σαLcosθ2023/7/18第28页,课件共47页,创作于2023年2月在现成基底W上,形成一个晶核时总的自由能变化为ΔG非:ΔG非

=VαΔGV+∑Aiσi

=

VαΔGV+AαLσαL+AαWσαW-AαWσLW

=VαΔGV+AαLσαL+AαW(σαW-σLW)

=VαΔGV+AαLσαL+AαW(-σαLcosθ)

=VαΔGV+σαL(AαL-AαWcosθ)=

πr3(2-3cosθ+cos3θ)ΔGV+σαL[2πr2(1-cosθ)-πr2sin2θcosθ]

=

πr3(2-3cosθ+cos3θ)ΔGV+πr2σαL(2-3cosθ+cos3θ)2023/7/18第29页,课件共47页,创作于2023年2月(1)求r*非

=?

令ΔG非式求导且等于零,得:(2)求ΔG*非

=?

可见:非均匀形核的ΔG*非受r*非与θ两个因素的影响。由于r*非

=r*,所以我们只讨论θ不同时ΔG*非的变化。2023/7/18第30页,课件共47页,创作于2023年2月1)θ=0时,ΔG*非

=0说明杂质本身就是晶核,不需要形核功。2)θ=180°时,ΔG*非

=ΔG*,相当于均匀形核,基底不起作用。3)一般θ在0-180°之间变化。所以,ΔG*非

<ΔG*,即非均匀形核所需的ΔG*非总是小于均匀形核的ΔG*,表明基底总会促进晶核的形成。而θ↓,非均匀形核越容易,那么,影响θ角的因素是什么呢?2023/7/18第31页,课件共47页,创作于2023年2月由前面可知:cosθ=(σLW-σαW)/σαL

当液态金属确定后,σαL值固定不变,那么θ只取决于(σLW-σαW)的差值。要使θ↓,应使cosθ→1。只有σαW↓时,σαL越接近σLW

,cosθ才越接近于1。即,固态质点与晶核的表面能越小,它对形核的催化效应就越高。作为非均匀形核基底是有条件的:①结构相似;

②尺寸相当。

人们在这方面的认识还不全面,主要还是靠经验,加一些形核剂,促进非自发形核,↑N达到细化组织,改善性能的目的。如:Fe能促进Cu的非均匀形核;Ti能促进Al的非均匀形核。2023/7/18第32页,课件共47页,创作于2023年2月3.N与ΔT的关系ΔT较小时N非较大

N较小(1)非均匀形核率(2)均匀形核率

非均匀形核率取决于以下因素:

1)过冷度↑,N非↑;

2)外来夹杂↑,N非↑;

3)液体金属的过热↑,N非↓。上图说明:ΔT相同时,r*=r*非,但非均匀形核时,r*非只决定r,而θ才决定晶核的形状和大小。2023/7/18第33页,课件共47页,创作于2023年2月3.4长大规律

对一个晶核的发展过程来说,稳定晶核出现后,马上就进入了长大阶段。晶体长大宏观上看:是晶体界面向液相中的逐步推移;微观上看:是原子由液相中扩散到晶体表面上。所以晶体长大是有条件的:①要求液相能不断地向晶体扩散,供应原子。②要求晶体表面能不断并牢固地接纳原子。

一般来说,原子的供应是不困难的,而晶体表面接纳原子的方式会由于晶体表面情况不同而不同,就出现了不同的晶体长大机制。2023/7/18第34页,课件共47页,创作于2023年2月一.晶体的长大机制1.垂直长大机制(连续长大)L

在粗糙界面上,液相原子可以连续、垂直地向界面添加,界面的性质永远不会改变。从而使界面迅速的向液相推移,这种长大方式称为垂直长大方式,它的长大速度较快,与ΔT成正比,大多数金属晶体均以这种方式长大。Vg=K1ΔT

2023/7/18第35页,课件共47页,创作于2023年2月2.二维晶核长大机制

当固液界面为光滑界面时,晶体长大只能依靠二维晶核,即依靠L中的结构起伏和能量起伏,使一定大小的原子集团,落到光滑界面上,形成具有一个原子厚度并且大于临界半径的晶核,即为二维晶核。二维晶核形成后,四周出现了台阶,L中的原子靠边缘长上去,长满后再形成一个二维晶核再扩展,见图3.9。晶体以这种方式长大时,其长大速度十分缓慢。长大速度:单位时间内晶核长大的线速度,用Vg表示。

Vg=K2e-B/ΔT图3.9二维晶核机制示意图2023/7/18第36页,课件共47页,创作于2023年2月3.螺型位错长大机制实际金属都不是理想晶体,内部存在着各种缺陷。

如在光滑界面上出现一个螺型位错露头,见图3.9。它在晶体表面形成台阶。使L中原子堆砌到台阶处,每铺一排原子,台阶就向前移动一个原子间距。它的长大速度比二维晶核长大方式快得多。

Vg=K3ΔT2

图3.9螺型位错台阶机制示意图2023/7/18第37页,课件共47页,创作于2023年2月二.纯金属的生长形态

根据晶体的界面性质及界面温度分布,纯金属的生长形态主要有两种:a)平面生长

晶体始终保持平的表面向前生长,并保持规则的几何外形。b)枝晶生长

晶体向树枝那样向前生长,不断分支发展。

晶体是以平面方式生长还是以枝晶方式生长,主要取决于液固界面前沿液体中的温度梯度。2023/7/18第38页,课件共47页,创作于2023年2月1.正的温度梯度T界面固液过冷度距离Tm

L中存在正的温度梯度,以平面方式生长。∵当界面上偶有凸起而进入到T较高的L中时,它的长大速度会↓,甚至会停止。而周围晶体会很快赶上来,凸起部分消失,恢复到平面状态。2023/7/18第39页,课件共47页,创作于2023年2月TTm固液过冷度距离

L中存在负的温度梯度,以枝晶方式生长。

∵在长大中如有凸起部分,必然伸到T较低的L中而继续长大,它的长大速度比周围更迅速,而且又会生长出新的枝晶,导致枝晶方式长大,见图3-11。2.负的温度梯度2023/7/18第40页,课件共47页,创作于2023年2月3.5结晶理论的某些实际应用1.

晶粒大小的控制方法晶粒的大小取决于形核率N和长大速度Vg的相对大小,根据分析计算,单位体积中的晶粒数目Zv为:Zv=0.9()3/4单位面积中的晶粒数目Zs为:

Zs=1.1()1/2可见,比值↑,Zv,Zs↑,晶粒越细小。即:凡能促进形核,抑制长大的因素,都能细化晶粒。2023/7/18第41页,课件共47页,创作于2023年2月

根据结晶时的形核和长大规律,为了细化铸锭和焊缝区的晶粒,在工业生产中可以采用以下三种方法:

(1)提高ΔT

ΔT↑,N↑>Vg↑∴N/Vg↑,晶粒细化。

此法只对小型或薄壁铸件有效,较大的厚壁铸件或形状复杂的件不适用。提高

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论