版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省青岛市胶州第九中学高二数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.某单位员工按年龄分为A、B、C三个等级,其人数之比为5:4:1,现用分层抽样的方法从总体中抽取一个容量为20的样本,则从C等级组中应抽取的样本数为()A.2 B.4 C.8 D.10参考答案:A【考点】分层抽样方法.【分析】利用抽样过程中每个个体被抽到的可能性相同,即可得出结论.【解答】解:由题意,从C等级组中应抽取的样本数为20×=2,故选A.2.已知,则、、的大小关系是(
)A.
B.
C.
D.参考答案:B略3.直三棱柱ABC-A1B1C1中,若,则
(
)A
B
C
D参考答案:D略4.已知点P,A,B,C在同一个球的球表面上,PA⊥平面ABC,,,,则该球的表面积为(
)A.4π B.8π C.16π D.32π参考答案:B【分析】利用补体法把三棱锥补成一个长方体,原三棱锥的外接球就是长方体的外接球,故可求外接球的直径,从而求得球的表面积.【详解】把三棱锥补成一个长方体,长方体的外接球就是原三棱锥的外接球,它的直径为,故球的表面积为,故选B.【点睛】几何体的外接球、内切球问题,关键是球心位置的确定,必要时需把球的半径放置在可解的几何图形中.如果球心的位置不易确定,则可以把该几何体补成规则的几何体,便于球心位置和球的半径的确定.5.下列结论中,正确的是
⑴垂直于同一条直线的两条直线平行.
⑵垂直于同一条直线的两个平面平行.⑶垂直于同一个平面的两条直线平行.
⑷垂直于同一个平面的两个平面平行.A.⑴⑵⑶
B.⑴⑵⑶⑷
C.⑵⑶
D.⑵⑶⑷参考答案:C6.命题:$x0?R,x20+2x0+2≤0,该命题的否定是A.$x0?R,x20+2x0+2≥0
B."x?R,x2+2x+2>0C."x?R,x2+2x+2≤0
D.若x20+2x0+2≤0,则$x0?R参考答案:B7.抛物线顶点在原点,焦y轴上,其上一点P(m,1)到焦点距离为,则抛物线方程为(
)A. B. C. D.参考答案:C8.在区间(10,20]内的所有实数中,随机取一个实数a,则这个实数a<13的概率是
A.
B.
C.
D.参考答案:B9.设有函数组:①,;②,;③,;④,.其中表示同一个函数的有(
).A.①②
B.②④
C.①③
D.③④参考答案:D
在①中,的定义域为,的定义域为,故不是同一函数;在②中,的定义域为,的定义域为,故不是同一函数;③④是同一函数.10.已知等差数列{an}满足a6+a10=20,则下列选项错误的是(
) A.S15=150 B.a8=10 C.a16=20 D.a4+a12=20参考答案:C考点:等差数列的性质.专题:计算题;等差数列与等比数列.分析:利用等差数列的通项的性质,可得结论.解答: 解:S15=(a1+a15)=(a6+a10)=150,即A正确;a6+a10=2a8=20,∴a8=10,即B正确;a6+a10≠a16,即C错误a4+a12=a6+a10=20,即D正确.故选:C.点评:本题考查等差数列的通项的性质,考查学生的计算能力,正确运用等差数列的通项的性质是关键.二、填空题:本大题共7小题,每小题4分,共28分11.以A(-1,2),B(5,6)为直径端点的圆的方程是_______________。参考答案:12.某射手射击所得环数ξ的分布列如下:ξ78910Px0.10.3y已知ξ的期望Eξ=8.9,则y的值为______.参考答案:0.4;13.已知,若关于的方程有实根,则的取值范围是__.参考答案:略14.观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49…照此规律,第n个等式为.参考答案:n+(n+1)+(n+2)+…+(3n﹣2)=(2n﹣1)2【考点】归纳推理.【专题】计算题.【分析】观察所给的等式,等号右边是12,32,52,72…第n个应该是(2n﹣1)2,左边的式子的项数与右边的底数一致,每一行都是从这一个行数的数字开始相加的,写出结果.【解答】解:观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49…等号右边是12,32,52,72…第n个应该是(2n﹣1)2左边的式子的项数与右边的底数一致,每一行都是从这一个行数的数字开始相加的,照此规律,第n个等式为n+(n+1)+(n+2)+…+(3n﹣2)=(2n﹣1)2,故答案为:n+(n+1)+(n+2)+…+(3n﹣2)=(2n﹣1)2【点评】本题考查归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系,本题是一个易错题.15.若不存在整数满足不等式,则实数的取值范围是
.参考答案:16.过抛物线y2=2x的焦点作直线交抛物线于P(x1,y1),Q(x2,y2)两点,若x1+x2=3,则|PQ|=.参考答案:4【考点】直线与圆锥曲线的综合问题.【分析】根据抛物线的定义可知PF=,,且PQ=PF+QF=x1+x2+1,代入可求【解答】解:∵抛物线y2=2x的焦点(,0),准线x=﹣根据抛物线的定义可知PF=,∴PQ=PF+QF=x1+x2+1=4故答案为:417.关于二项式,有下列命题:①该二项展开式中非常数项的系数之和是1;②该二项展开式中第六项为;③该二项展开式中系数最大的项为第1002项;④当时,除以2006的余数是2005.其中所有正确命题的序号是_______________。参考答案:①④令x=1求出二项式(x?1)2005所有项的系数和为0,令x=0求出常数项为?l,非常数项的系数和是1,即得①正确;二项展开式的第六项为,即得②错误;二项展开式中系数绝对值最大的项为第1003项,即③错误;当x=2006时,(x?1)2005除以2006的余数是2006?l=2005,即④正确。故答案为:①④。三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,在四棱锥P﹣ABCD中,四边形ABCD是平行四边形,E、F分别是AB、PC中点,求证:EF∥面PAD.参考答案:【考点】直线与平面平行的判定.【分析】取PD的中点G,连接FG、AG,由PF=CF,PG=DG,所以FG∥CD,且FG=CD.又因为四边形ABCD是平行四边形,且E是AB的中点.所以AE∥CD,且AE=CD.证得四边形EFGA是平行四边形,所以EF∥AG,由线面平行的判定定理即可得证.【解答】证明:取PD的中点G,连接FG、AG.因为PF=CF,PG=DG,所以FG∥CD,且FG=CD.又因为四边形ABCD是平行四边形,且E是AB的中点.所以AE∥CD,且AE=CD.所以FG∥AE,且FG=AE,所以四边形EFGA是平行四边形,所以EF∥AG.又因为EF?平面PAD,AG?平面PAD,所以EF∥平面PAD.19.(2012?杨浦区一模)在△ABC中,角A、B、C的对边分别为a、b、c,且满足(2b﹣c)cosA﹣acosC=0,(Ⅰ)求角A的大小;(Ⅱ)若,S⊿ABC=,试判断△ABC的形状,并说明理由.参考答案:解:(Ⅰ)∵(2b﹣c)cosA﹣acosC=0,由正弦定理,得(2sinB﹣sinC)cosA﹣sinAcosC=0,∴2sinBcosA﹣sin(A+C)=0,sinB(2cosA﹣1)=0,∵0<B<π,∴sinB≠0,∴,∵0<A<π,∴.(Ⅱ)∵,即∴bc=3①由余弦定理可知cosA==∴b2+c2=6,②由①②得,∴△ABC为等边三角形考点:正弦定理;余弦定理.
专题:计算题.分析:(1)先利用正弦定理把(2b﹣c)cosA﹣acosC=0中的边转化成角的正弦,进而化简整理得sinB(2cosA﹣1)=0,求得cosA,进而求得A.(2)根据三角形面积公式求得bc,进而利用余弦定理求得b2+c2进而求得b和c,结果为a=b=c,进而判断出∴△ABC为等边三角形.解答:解:(Ⅰ)∵(2b﹣c)cosA﹣acosC=0,由正弦定理,得(2sinB﹣sinC)cosA﹣sinAcosC=0,∴2sinBcosA﹣sin(A+C)=0,sinB(2cosA﹣1)=0,∵0<B<π,∴sinB≠0,∴,∵0<A<π,∴.(Ⅱ)∵,即∴bc=3①由余弦定理可知cosA==∴b2+c2=6,②由①②得,∴△ABC为等边三角形.点评:本题主要考查了正弦定理和余弦定理的应用.考查了学生分析问题和灵活运用所学知识的能力.20.如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.参考答案:【考点】MI:直线与平面所成的角;LS:直线与平面平行的判定.【分析】(1)法一、取PB中点G,连接AG,NG,由三角形的中位线定理可得NG∥BC,且NG=,再由已知得AM∥BC,且AM=BC,得到NG∥AM,且NG=AM,说明四边形AMNG为平行四边形,可得NM∥AG,由线面平行的判定得到MN∥平面PAB;法二、证明MN∥平面PAB,转化为证明平面NEM∥平面PAB,在△PAC中,过N作NE⊥AC,垂足为E,连接ME,由已知PA⊥底面ABCD,可得PA∥NE,通过求解直角三角形得到ME∥AB,由面面平行的判定可得平面NEM∥平面PAB,则结论得证;(2)连接CM,证得CM⊥AD,进一步得到平面PNM⊥平面PAD,在平面PAD内,过A作AF⊥PM,交PM于F,连接NF,则∠ANF为直线AN与平面PMN所成角.然后求解直角三角形可得直线AN与平面PMN所成角的正弦值.【解答】(1)证明:法一、如图,取PB中点G,连接AG,NG,∵N为PC的中点,∴NG∥BC,且NG=,又AM=,BC=4,且AD∥BC,∴AM∥BC,且AM=BC,则NG∥AM,且NG=AM,∴四边形AMNG为平行四边形,则NM∥AG,∵AG?平面PAB,NM?平面PAB,∴MN∥平面PAB;法二、在△PAC中,过N作NE⊥AC,垂足为E,连接ME,在△ABC中,由已知AB=AC=3,BC=4,得cos∠ACB=,∵AD∥BC,∴cos,则sin∠EAM=,在△EAM中,∵AM=,AE=,由余弦定理得:EM==,∴cos∠AEM=,而在△ABC中,cos∠BAC=,∴cos∠AEM=cos∠BAC,即∠AEM=∠BAC,∴AB∥EM,则EM∥平面PAB.由PA⊥底面ABCD,得PA⊥AC,又NE⊥AC,∴NE∥PA,则NE∥平面PAB.∵NE∩EM=E,∴平面NEM∥平面PAB,则MN∥平面PAB;(2)解:在△AMC中,由AM=2,AC=3,cos∠MAC=,得CM2=AC2+AM2﹣2AC?AM?cos∠MAC=.∴AM2+MC2=AC2,则AM⊥MC,∵PA⊥底面ABCD,PA?平面PAD,∴平面ABCD⊥平面PAD,且平面ABCD∩平面PAD=AD,∴CM⊥平面PAD,则平面PNM⊥平面PAD.在平面PAD内,过A作AF⊥PM,交PM于F,连接NF,则∠ANF为直线AN与平面PMN所成角.在Rt△PAC中,由N是PC的中点,得AN==,在Rt△PAM中,由PA?AM=PM?AF,得AF=,∴sin.∴直线AN与平面PMN所成角的正弦值为.21.已知圆的半径为,圆心在直线y=2x上,圆被直线x﹣y=0截得的弦长为,求圆的方程. 参考答案:【考点】关于点、直线对称的圆的方程. 【专题】计算题. 【分析】设圆心(a,2a),由弦长求出a的值,得到圆心的坐标,又已知半径,故可写出圆的标准方程. 【解答】解:设圆心(a,2a),由弦长公式求得弦心距d==, 再由点到直线的距离公式得d==|a|, ∴a=±2,∴圆心坐标为(2,4),或(﹣2,﹣4),又半径为, ∴所求的圆的方程为:(x﹣2)2+(y﹣4)2=10或(x+2)2+(y+4)2=10. 【点评】本题考查圆的标准方程的求法,利用弦长公式和点到直线的距离公式,关键是求出圆心的坐标. 22.(本题满分14分)设三组实验数据(x1,y1),(x2,y2),(x3,y3)的回归直线方程是:=x+,使代数式[y1-(x1+)]2+[y2-(x2+)]2+[y3-(x3+)]2的值最小时,=,
=-,(分别是这三组数据的横、纵坐标的平均数).若有六组数据列表如下:x2345
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年个人借款最高额合同样本
- 工程销售服务合同模板
- 企业互联网升级改造方案合同
- 亚丁电音节国际交流方案
- 互联网旅游产业平台建设项目合同
- 审计服务购买合同模板
- 国际交流项目安全管理制度
- 实验室清洁与消毒管理制度
- 冻肉购销合同模板
- 化工师徒合同模板
- 第4单元表内除法(一)应用题(专项训练)-2024-2025学年二年级上册数学苏教版
- 行政复议法-形考作业2-国开(ZJ)-参考资料
- 《上海市奉贤区小区机动车停放管理工作调查报告》4300字
- 世界气温和降水的分布
- 申请一年或多年多次往返申根签证信
- DIC的诊断与评价ppt课件
- 车辆评估报告
- 施工图变更单4页
- 金山区社区卫生服务中心基本项目标化工作量指导标准2015
- 纸尿裤生产规程与设备维护
- 柴油机单轨吊技术在煤矿的应用
评论
0/150
提交评论