




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
晶体结构:原子规则排列,主要体现是原子排列具有周期性,或者称长程有序。有此排列结构的材料为晶体。晶体中原子、分子规则排列的结果使晶体具有规则的几何外形,X射线衍射已证实这一结论。非晶体结构:不具有长程有序。有此排列结构的材料为非晶体。了解固体结构的意义:固体中原子排列形式是研究固体材料宏观性质和各种微观过程的基础。晶体结构固体的结构分为:非晶体结构多晶体结构1.1晶体结构1.1.1空间点阵1.1.2密勒指数1.1.3倒格子1精选可编辑ppt晶体内部结构概括为是由一些相同点子在空间有规则作周期性无限分布,这些点子的总体称为点阵。(该学说正确地反映了晶体内部结构长程有序特征,后来被空间群理论充实发展为空间点阵学说,形成近代关于晶体几何结构的完备理论。)1.1.1空间点阵一、布喇菲的空间点阵学说2精选可编辑ppt关于结点的说明:
当晶体是由完全相同的一种原子组成,结点可以是原子本身位置。当晶体中含有数种原子,这数种原子构成基本结构单元(基元),结点可以代表基元重心,原因是所有基元的重心都是结构中相同位置,也可以代表基元中任意点子结点示例图1.点子空间点阵学说中所称的点子,代表着结构中相同的位置,也为结点,也可以代表原子周围相应点的位置。3精选可编辑ppt晶体由基元沿空间三个不同方向,各按一定的距离周期性地平移而构成,基元每一平移距离称为周期。在一定方向有着一定周期,不同方向上周期一般不相同。基元平移结果:点阵中每个结点周围情况都一样。2.点阵学说概括了晶体结构的周期性4精选可编辑ppt3.晶格的形成通过点阵中的结点,可以作许多平行的直线族和平行的晶面族,点阵成为一些网格------晶格。5精选可编辑ppt
平行六面体原胞概念的引出:
由于晶格周期性,可取一个以结点为顶点,边长等于该方向上的周期的平行六面体作为重复单元,来概括晶格的特征。即每个方向不能是一个结点(或原子)本身,而是一个结点(或原子)加上周期长度为a的区域,其中a叫做基矢。这样的重复单元称为原胞。6精选可编辑ppt原胞(重复单元)的选取规则
反映周期性特征:只需概括空间三个方向上的周期大小,原胞可以取最小重复单元(物理学原胞),结点只在顶角上。反映对称性特征:晶体都具有自己特殊对称性。结晶学上所取原胞体积不一定最小,结点不一定只在顶角上,可以在体心或面心上(晶体学原胞);原胞边长总是一个周期,并各沿三个晶轴方向;原胞体积为物理学原胞体积的整数倍数。7精选可编辑ppt引出物理学原胞的意义:三维格子的周期性可用数学的形式表示如下:T(r)=T(r+l1a1+l2a2+l2a3)r为重复单元中任意处的矢量;T为晶格中任意物理量;l1、l2、l3是整数,a1、a2、a3是重复单元的边长矢量。为进行固体物理学中的计算带来很大的方便。位矢RrR+r8精选可编辑ppt不喇菲点阵的特点:每点周围情况都一样。是由一个结点沿三维空间周期性平移形成,为了直观,可以取一些特殊的重复单元(结晶学原胞)。
完全由相同的一种原子组成,则这种原子组成的网格为不喇菲格子,和结点所组成的网格相同。
晶体的基元中包含两种或两种以上原子,每个基元中,相应的同种原子各构成和结点相同网格----子晶格(或亚晶格)。
复式格子(或晶体格子)是由所有相同结构子晶格相互位移套构形成。4.结点的总体------不喇菲点阵或不喇菲格子9精选可编辑ppt晶体格子(简称晶格):晶体中原子排列的具体形式。原子规则堆积的意义:把晶格设想成为原子规则堆积,有助于理解晶格组成,晶体结构及与其有关的性能等。二、晶格的实例1.简单立方晶格2.体心立方晶格3.原子球最紧密排列的两种方式10精选可编辑ppt特点:层内为正方排列,是原子球规则排列的最简单形式;原子层叠起来,各层球完全对应,形成简单立方晶格;这种晶格在实际晶体中不存在,但是一些更复杂的晶格可以在简单立方晶格基础上加以分析。原子球的正方排列简单立方晶格典型单元••••••••1.简单立方晶格11精选可编辑ppt简单立方晶格的原子球心形成一个三维立方格子结构,整个晶格可以看作是这样一个典型单元沿着三个方向重复排列构成的结果。••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••简单立方晶格单元沿着三个方向重复排列构成的图形12精选可编辑ppt2.体心立方晶格•••••••••体心立方晶格的典型单元排列规则:层与层堆积方式是上面一层原子球心对准下面一层球隙,下层球心的排列位置用A标记,上面一层球心的排列位置用B标记,体心立方晶格中正方排列原子层之间的堆积方式可以表示为:ABABABAB…体心立方晶格的堆积方式13精选可编辑ppt体心立方晶格的特点:为了保证同一层中原子球间的距离等于A-A层之间的距离,正方排列的原子球并不是紧密靠在一起;由几何关系证明,间隙=0.31r0,r0为原子球的半径。具有体心立方晶格结构的金属:Li、Na、K、Rb、Cs、Fe等,14精选可编辑ppt密排面:原子球在该平面内以最紧密方式排列。堆积方式:在堆积时把一层的球心对准另一层球隙,获得最紧密堆积,可以形成两种不同最紧密晶格排列。ABABAB排列(六角密排晶格)ABCABCABC排列(立方密堆)3.原子球最紧密排列的两种方式15精选可编辑ppt前一种为六角密排晶格,(如Be、Mg、Zn、Cd),后一种晶格为立方密排晶格,或面心立方晶格(如Cu、Ag、Au、Al)面心立方晶格(立方密排晶格)面心(111)以立方密堆方式排列16精选可编辑ppt面心立方晶体(立方密排晶格)17精选可编辑ppt六方密堆晶格的原胞18精选可编辑ppt、不喇菲格子与复式格子把基元只有一个原子的晶格,叫做不喇菲格子;把基元包含两个或两个以上原子的,叫做复式格子。注:如果晶体由一种原子构成,但在晶体中原子周围的情况并不相同(例如用X射线方法,鉴别出原子周围电子云的分布不一样),则这样的晶格虽由一种原子组成,但不是不喇菲格子,而是复式格子。原胞中包含两个原子。19精选可编辑ppt1.氯化钠结构表示钠表示氯钠离子与氯离子分别构成面心立方格子,氯化钠结构是由这两种格子相互平移一定距离套购而成。20精选可编辑ppt2.氯化铯结构表示Cs
。
表示Cl21精选可编辑ppt3.钙钛矿型结构•°••••••••°°表示Ba°表示O•表示Ti结晶学原胞氧八面体22精选可编辑ppt••••••••°°••••••••°°••••••••°°••••••基元中任意点子或结点作周期性重复的晶体结构复式原胞重复的晶体结构••••••••••••••••••••••••23精选可编辑ppt••••••••°°••••••••°°••••••••°°••••••24精选可编辑ppt••••••••°°五个子晶胞°°°°25精选可编辑ppt注:结点的概念以及结点所组成的不喇菲格子的概念,对于反映晶体中的周期性是很有用的。基元中不同原子所构成的集体运动常可概括为复式格子中各个子晶格之间的相对运动。固体物理在讨论晶体内部粒子的集体运动时,对于基元中包含两个或两个以上原子的晶体,复式格子的概念显得重要,26精选可编辑ppt四、结晶学原胞与固体物理学原胞间的相互转化•••••••••••••••••••••••••••••••简立方体立方面心立方立方晶系不喇菲原胞原胞的基矢为:
a1=ia,a2=ja,a3=ka结晶学中,属于立方晶系的不喇菲原胞有简立方、体心立方和面心立方。1.简立方27精选可编辑ppt2.体心立方28精选可编辑ppt固体物理学的原胞基矢与结晶学原胞基矢的关系:
a1=(-i+j+k)a\2a2=(k+i-j)a\2a3=(i+j-k)a\2体积关系:结晶学原胞的体积是物理学原胞的2倍。原因是结晶学原胞中含有两个原子,而物理学原胞中含有一个原子。29精选可编辑pptR=l1a1+l2a2+l2a3R=2a1+a2+a3R物理=a2+a3R结晶=(1/2)a+(1/2)a+a=(1/2)(a+a+2a)3.面心立方a1a2a330精选可编辑ppt4.六角密堆固体物理学的原胞基矢与结晶学原胞基矢的关系:
a1=(j+k)a\2a2=(k+i)a\2a3=(i+j)a\2体积关系:结晶学原胞的体积是物理学原胞的4倍。原因是结晶学原胞中含有4个原子,而物理学原胞中含有一个原子。31精选可编辑ppt1.1.2密勒指数一、晶列1.晶列通过任意两个格点连一直线,则这一直线包含无限个相同格点,这样的直线称为晶列,也是晶体外表上所见的晶棱。其上的格点分布具有一定的周期------任意两相邻格点的间距。32精选可编辑ppt1.晶列的特点
(1)一族平行晶列把所有点包括无遗。(2)在一平面中,同族的相邻晶列之间的距离相等。(3)通过一格点可以有无限多个晶列,其中每一晶列都有一族平行的晶列与之对应。(4)有无限多族平行晶列。33精选可编辑ppt-。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
晶面的特点:(1)通过任一格点,可以作全同的晶面与一晶面平行,构成一族平行晶面.(2)所有的格点都在一族平行的晶面上而无遗漏;(3)一族晶面平行且等距,各晶面上格点分布情况相同;(4)晶格中有无限多族的平行晶面。二、晶面34精选可编辑ppt三、晶向一族晶列的特点是晶列的取向,该取向为晶向;同样一族晶面的特点也由取向决定,因此无论对于晶列或晶面,只需标志其取向。注:为明确起见,下面仍只讨论物理学的不喇菲格子。35精选可编辑ppt任一格点A的位矢Rl为
Rl=l1a1+l2a2+l3a3式中l1、l2、l3是整数。若互质,直接用他们来表征晶列OA的方向(晶向),这三个互质整数为晶列的指数,记以[l1,l2,l3]同样,在结晶学上,原胞不是最小的重复单元,而原胞的体积是最小重复简单整数倍,以任一格点o为原点,a、b、c为基矢,任何其他格点A的位矢为kma+knb+kpc其中m、n、p为三个互质整数,于是用m、n、p来表示晶列OA的方向,记以[nmp]。1.晶列指数(晶列方向的表示方法)ORlAa1a2a336精选可编辑ppt表示晶面的方法,即方位:在一个坐标系中用该平面的法线方向的余弦;或表示出这平面在座标轴上的截距。a1a2a3设这一族晶面的面间距为d,它的法线方向的单位矢量为n,则这族晶面中,离开原点的距离等于d的晶面的方程式为:
R•n=d为整数;R是晶面上的任意点的位矢。R2.密勒指数(晶面方向的表示方法)37精选可编辑ppt设此晶面与三个座标轴的交点的位矢分别为ra1、sa2、ta3,代入上式,则有
ra1cos(a1,n)=d
sa2cos(a2,n)=dta3cos(a3,n)=da1、a2、a3取单位长度,则得cos(a1,n):cos(a2,n):cos(a3,n)=1\r:1\s:1\t结论:晶面的法线方向n与三个坐标轴(基矢)的夹角的余弦之比等于晶面在三个轴上的截距的倒数之比。38精选可编辑ppt已知一族晶面必包含所有的格点,因此在三个基矢末端的格点必分别落在该族的不同的晶面上。设a1、a2、a3的末端上的格点分别在离原点的距离为h1d、h2d、h3d的晶面上,其中h1、h2、h3都是整数,三个晶面分别有
a1•n=h1d,a2•n=h2d,a3•n=h3dn是这一族晶面公共法线的单位矢量,于是
a1cos(a1,n)=h1d
a2cos(a2,n)=h2da3cos(a3,n)=h3d证明截距的倒数之比为整数之比39精选可编辑pptcos(a1,n):cos(a2,n):cos(a3,n)=h1:h2:h3结论:晶面族的法线与三个基矢的夹角的余弦之比等于三个整数之比。可以证明:h1、h2、h3三个数互质,称它们为该晶面族的面指数,记以(h1h2h3)。即把晶面在座标轴上的截距的倒数的比简约为互质的整数比,所得的互质整数就是面指数。几何意义:在基矢的两端各有一个晶面通过,且这两个晶面为同族晶面,在二者之间存在hn个晶面,所以最靠近原点的晶面(=1)在坐标轴上的截距为a1/h1、a2/h2、a3/h3,同族的其他晶面的截距为这组截距的整数倍。40精选可编辑ppt实际工作中,常以结晶学原胞的基矢a、b、c为坐标轴来表示面指数。在这样的坐标系中,标征晶面取向的互质整数称为晶面族的密勒指数,用(hkl)表示。例如:有一ABC面,截距为4a、b、c,截距的倒数为1/4、1、1,它的密勒指数为(1,4,4)。另有一晶面,截距为2a、4b、c,截距的倒数为1/2、1/4、0,它的密勒指数为(2、1、0)。41精选可编辑ppt简单晶面指数的特点:
晶轴本身的晶列指数特别简单,为[100]、[010]、[001];
晶体中重要的带轴的指数都是简单的;
晶面指数简单的晶面如(110)、(111)是重要的晶面;
晶面指数越简单的晶面,面间距d就越大,格点的面密度大,易于解理;
格点的面密度大,表面能小,在晶体生长过程中易于显露在外表;对X射线的散射强,在X射线衍射中,往往为照片中的浓黑斑点所对应。42精选可编辑ppt1.1.3倒格子条件:X射线源、观测点与晶体的距离都比晶体的线度大的多,入射线和衍射线可看成平行光线;散射前后的波长不变,且为单色。一、从X射线衍射方程反射公式引出倒格矢概念43精选可编辑ppt44精选可编辑ppt45精选可编辑ppt46精选可编辑ppt47精选可编辑pptCO=-Rl·S0OD=Rl·S衍射加强条件:Rl·(S-S0)=有:ko=(2/)S0k=(2/)S得:Rl·(k-k0)=2设:k-k0=nKhk-k0=nKh的物理意义:当入射波矢和衍射波矢相差一个或几个Kh(倒格矢)时,满足衍射加强条件,n为衍射级数。1.衍射方程CRlD衍射线单位基矢SOA入射线单位基矢S0晶面48精选可编辑ppt2.反射公式|k-k0|=2|S/
-S0/
|
=(4/)sin|k-k0|
=|nKh|=2n/dh1h2h3
|
Kh|=2/dh1h2h3PATAPQQSd入射线与反射线之间的光程差:=SA+AT=2dsin满足衍射方程:2dh1h2h3sin=nk-k0kk049精选可编辑ppt设一晶格的基矢为a1、a2、a3,有如下的关系:b1=
2(a2a3)\说明b1垂直于a2和a3所确定的面;
b2=2(a3a1)\说明b2垂直于a3和a1所确定的面
b3=2(a1a2\说明b3垂直于a1和a2所确定的面
式中:=a1·(
a2a3)为晶格原胞的体积。二、倒格子的概念1.倒格子的数学定义50精选可编辑ppt倒格子:以b1、b2、b3为基矢的格子是以a1、a2、a3为基矢的格子的倒格子。(1)正格子基矢和倒格子基矢的关系2.正格子与倒格子的几何关系=2(i=j)ai·bj=2ij=0(ij)证明如下:a1·b1=2
a1·(
a2a3)/a1·(
a2a3)=2
因为倒格子基矢与不同下脚标的正格子基矢垂直,有:
a2·b1=0a3·b1=051精选可编辑ppt
(2)除(2)3因子外,正格子原胞体积和倒格子原胞体积*互为倒数。
*=b1·(
b2b3)=(2)3/
表示正格点表示倒格点ABC为一族晶面(h1h2h3)中的最靠近原点的晶面,与kh垂直a1a2a3BCAkha1/h1a3/h3a2/h2(3)正格子中一族晶面(h1h2h3)和倒格矢
kh=h1b1+h2b2+h3b3正交,即晶面的弥勒指数是垂直于该晶面的最短倒格矢坐标.52精选可编辑ppt由(3)、(4)可知,一个倒格矢代表正格子中的一族平行晶面。晶面族(h1h2h3)中离原点的距离为dh1h2h3的晶面的方程式可写成:Rl·kh/|kh|=dh1h2h3
(=0,±1,±2,……)得出正格矢和倒格矢的关系:Rl·kh=2
结论:如果两矢量的关系:Rl·kh=2,则其中一个为正格子,另一个必为倒格子;即正格矢和倒格矢恒满足正格矢和倒格矢的关系。(4)倒格矢的长度正比于晶面族(h1h2h3)的面间距的倒数。dh1h2h3=a1/h1·kh/|kh|=a1(h1b1+h2b2+h3b3)/h1|kh|=2/|kh|53精选可编辑ppt结论:倒格矢Kh垂直某一晶面(h1h2h3),也即该晶面的法线方向与此倒格矢方向一致。倒格矢Kh的大小与和其垂直的晶面间距成正比。一个倒格矢对应一族晶面,但一族晶面可以对应无数个倒格矢,这些倒格矢的方向一致,大小为最小倒格矢的整数倍。满足X射线衍射的一族晶面产生一个斑点,该斑点代表一个倒格点,即该倒格点对应一族晶面指数。54精选可编辑pptk-k0=nKh的物理意义:当入射波矢和衍射波矢相差一个或几个倒格矢Kh时,则该族晶面(h1h2h3)满足衍射加强条件,n为衍射级数。从2dh1h2h3sin=n中可知:对于某一个确定的晶面族,要满足衍射加强条件,可以改变入射波矢的方向,即改变,或改变入射波矢的大小,即改变。55精选可编辑pptb1a1=2b2
a2=2a2a1b1b2Kl|Kl|=[(3b1)2+4b2)2]1/2=[(32/a1)2+42/a2)2]1/2面间距:d=2/|Kl|=[(6/a1)2+(8/a2)2]1/2RlOABRl=l1a1+l2a2+l3a3Kl=l1b1+l2b2+l3b3Rl=5a1+2a2Kl=3b1+4b2证明:3b1+4b2
(34)有:AB=OA-OB=a1/3-a2/4AB(3b1+4b2
)=(a1/3-a2/4)(3b1+4b2
)=a1b1-a2b2a1b1=0例如56精选可编辑ppt利用倒易点阵(倒格子)与正格子间的关系导出晶面间距和晶面夹角。
晶面间距dh1h2h3:dh1h2h3=2/|kh1h2h3|两边开平方,将kh1h2h3=h1b1+h2b2+h3b3及正倒格子的基矢关系代入,经过数学运算,得到面间距公式。晶面夹角:k1·k2=k1k2
COS57精选可编辑ppt100200300001002003101201301103202203(100)(001)(102)O倒格子与正格子间的相互转化10258精选可编辑ppt0b1b2一维格子倒格子原胞:作由原点出发的诸倒格矢的垂直平分面,这些平面完全封闭形成的最小的多面体(体积最小)------第一布里渊区。b1b20二维格子3.倒格子原胞和布里渊区••••ab••••59精选可编辑ppt构成第一布里渊区(简约布里渊区)的垂直平分线的方程式如下:
x=±/a及
y=±/a第二布里渊区的各个部分分别平移一个倒格矢,可以同第一区重合。第三布里渊区的各个部分分别平移适当的倒格矢也能同第一区重合。
(2/a)i-(2/a)i(2/a)j-(2/a)j60精选可编辑ppt4.X射线衍射与倒格子、布里渊区的关系(1)X射线衍射与倒格子的关系根据公式:k-k0=nKh,建立反射球或衍射球入射线的波矢k0反射线的波矢k倒格矢KhOCA晶面反射球Rl·kh/|kh|=dh1h2h3Rl.(k-k0)=2dh1h2h3=2/|kh1h2h3|(h1h2h3)(h1´
h2´
h3´
)61精选可编辑ppt建立反射球的意义通过所建立的反射球,把晶格的衍射条件和衍射照片上的斑点直接联系起来。利用反射球求出某一晶面族发生衍射的方向(若反射球上的A点是一个倒格点,则CA就是以OA为倒格矢的一族晶面h1h2h3的衍射方向S)。62精选可编辑pptOC倒格矢球面与反射球相交于一圆同一晶面由于晶体的旋转引起该晶面倒格矢的旋转从而形成倒格矢球面。63精选可编辑ppt结论:所有落在此球上的倒格点都满足关系式:k-k0=nKh即满足衍射加强条件。衍射线束的方向是C点至A点的联线方向。64精选可编辑ppt第一布里渊区第一布里渊区第一布里渊区二维正方格子的布里渊区
(2/a)i-(2/a)i(2/a)j-(2/a)j(2)X射线衍射与布里渊区的关系结论:
入射波矢从倒格子原点出发终止在布里渊区边界,该对应的入射波满足衍射条件k-k0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 标准模板配色方案(3篇)
- 山体施工防火措施方案(3篇)
- 报酬税务筹划方案(3篇)
- DB23-T2954-2021-直播电商人才培训服务规范-黑龙江省
- DB23-T3058-2021-早春大棚番茄行下内置式秸秆反应堆栽培技术规程-黑龙江省
- 公司对外活动管理制度
- 公共客运公司管理制度
- 包饭公司行政管理制度
- 节约水电措施方案(3篇)
- 工程甲方单位管理制度
- 2025统编办一年级下册道德与法治教案(精简版)
- (高清版)DB11∕T2279-2024社会单位消防安全评估规范
- 石碏谏宠州吁
- 2025年江苏省苏州市中考历史复习精练卷(中国古代史) 含答案
- 浙江省建设工程检测技术人员(建筑材料及构配件)认证考试题库(含答案)
- 四川省攀枝花市重点名校2025届中考生物押题卷含解析
- 员工住厂外免责协议书(2篇)
- 2024年淮南市第一人民医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 93J007-7道路图集(正式版)
- 《禽生产》课程标准
- 6月26国际禁毒日防范青少年药物滥用禁毒宣传课件
评论
0/150
提交评论