版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第2课时线段垂直平分线的性质【知识与技能】1.探索并了解线段垂直平分线的有关性质.2.尺规作图.3.应用线段垂直平分线的性质解决一些实际问题.【过程与方法】从生活实践中探索轴对称现象的共同特征,进一步发展空间观念.【情感态度】培养学生的抽象思维和空间观念,结合教学进行审美教育,让学生充分感知数学美,激发学生热爱数学的情感.【教学重点】线段的垂直平分线的性质及作法、应用.【教学难点】用尺规作线段的垂直平分线.一、情景导入,初步认知1.什么是轴对称图形及轴对称图形的性质?2.下列图形哪些是轴对称图形?【教学说明】使学生对小学学过的生活中的轴对称图形进一步加深印象,熟悉轴对称图形及对称轴,为本节课学习做铺垫.二、思考探究,获取新知探究1:线段的对称性1.线段是轴对称图形吗?如果是,你能找出它的一条对称轴吗?这条对称轴与线段存在着什么关系?2.做一做:按下面步骤做:①用准备的线段AB,对折AB,使得点A、B重合,折痕与AB的交点为O.②把纸展开.3.观察自己手中的图形,回答下列问题:①折痕与AB有什么样的位置关系?②AO与OB相等吗?能说明你的理由吗?【归纳结论】①线段是轴对称图形.它的对称轴有两条:一条是线段AB本身所在的直线;另一条是折痕.②它的对称轴垂直于这条线段并且平分它.③垂直于一条线段且平分这条线段的直线叫这条线段的垂直平分线(简称中垂线).探究2:垂直平分线的性质动手操作:作线段AB的中垂线MN,垂足为C;在MN上任取一点P,连结PA、PB;量一量:PA、PB的长,再换别的点试试,你能发现什么?PA=PBP1A=P1B由此你能得到什么规律?【归纳结论】线段垂直平分线上的点到这条线段两个端点的距离相等.【教学说明】可以运用全等来说明.教师适时的引导,学生的动手操作,有利于培养学生的观察和概括能力;充分体现了教师为主导,学生为主体的教学思想.探究3:作线段的垂直平分线1.已知线段AB,请画出它的垂直平分线.作法:第一步:分别以A、B为圆心,以大于AB一半的长度为半径画弧,两弧在AB的两侧分别相交于点M和点N;第二步:经过点M和点N画直线;直线MN就是线段AB的垂直平分线.2.各小组讨论:为什么所作的直线就是已知线段的垂直平分线?【教学说明】尺规作图能培养学生严谨的学习习惯,严密的逻辑思维和空间想象能力.尺规作图既能展现数学美,又能培养学生的学习兴趣.三、运用新知,深化理解1.见教材P124例12.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点,已知线段PA=5,则线段PB的长度为(B)3.如图,等腰△ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于(C)°°°°4.如图,在△△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,求线段DE的长.解:∵DE是BC边上的垂直平分线,∴BE=CE.∵△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,∴ED+DC+EC=24,①BE+BD-DE=12.②①-②得,DE=6.5.如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC长.解:(1)∵DE垂直平分AC,∴CE=AE,∴∠ECD=∠A=36°;(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,∴∠BEC=∠A+∠ECD=72°,∴∠BEC=∠B,∴BC=EC=5.答:(1)∠ECD的度数是36°;(2)BC长是5.6.如图所示,在Rt△ABC中,∠C=90°,∠A=30°.(1)尺规作图:作线段AB的垂直平分线l(保留作图痕迹,不写作法);(2)在已作的图形中,若l分别交AB、AC及BC的延长线于点D、E、F,连结BE.试判断EF与DE的数量关系并说明理由.解:(1)直线l即为所求.(2)EF=2DE.理由:在Rt△ABC中,∵∠A=30°,∴∠ABC=60°,又∵l为线段AB的垂直平分线,∴EA=EB,∴∠EBA=∠A=30°,∠AED=∠BED=60°∴∠EBC=30°=∠EBA,∠FEC=60°又∵ED⊥AB,EC⊥BC∴ED=EC.在Rt△ECF中,∠FEC=60°,∴∠EFC=30°,∴EF=2EC,∴EF=2ED.【教学说明】通过对不同题型的练习来对本节知识进行巩固.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.五、教学板书1.布置作业:教材“”中第1、2、3题.2.完成同步练习册中本课时的练习.数学教学应从学生实际出发,创设有助于学生自主学习的问题情境,引导学生通过实践、思考、探索、交流的方式去获取数学知识.本节的教学主要是通过学生的动手实验来获取
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 演讲稿素材范文
- 光电信息科学与工程实习报告
- 自愿放弃质保金保证书
- 怀化学院《外国文学(二)》2022-2023学年第一学期期末试卷
- 怀化学院《三维建模与材质》2023-2024学年第一学期期末试卷
- 怀化学院《计算机系统基础实训》2022-2023学年期末试卷
- 怀化学院《发酵工程》2023-2024学年第一学期期末试卷
- 2024版委托服务合同模板
- 生理卫生课程设计
- 2024的非营业用汽车损失保险合同
- 期中测评试卷(1-4单元)(试题)-2024-2025学年人教版三年级数学上册
- 建筑物修复行业市场深度分析报告
- 西欧庄园教学设计 统编版九年级历史上册
- GB/T 15822.1-2024无损检测磁粉检测第1部分:总则
- 2021年四川乐山中考满分作文《把诗情写进青春里》
- 2024新版七年级英语单词表
- 2024年移动网格经理(认证考试)备考试题库大全-上单选、多选题汇
- 江苏省徐州市2023-2024学年八年级上学期期中英语试题
- 牙体牙髓病学-关于牙齿的故事智慧树知到答案2024年南昌大学
- 【导学案】在奉献中成就精彩人生 2024-2025学年七年级道德与法治上册(统编版2024)
- 新质生产力解读课件
评论
0/150
提交评论