河南省鹤壁市外国语试验中学高二数学理期末试题含解析_第1页
河南省鹤壁市外国语试验中学高二数学理期末试题含解析_第2页
河南省鹤壁市外国语试验中学高二数学理期末试题含解析_第3页
河南省鹤壁市外国语试验中学高二数学理期末试题含解析_第4页
河南省鹤壁市外国语试验中学高二数学理期末试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省鹤壁市外国语试验中学高二数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在区间上随机地取一个实数,使得函数在区间上存在零点的概率是(A)

(B)

(C)

(D)参考答案:C2.复数A.

B.

C.

D.参考答案:C3.命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是(

)A.使用了归纳推理

B.使用了类比推理C.使用了“三段论”,但大前提使用错误

D.使用了“三段论”,但小前提使用错误参考答案:C4.在()n的展开式中,只有第5项的二项式系数最大,则展开式的常数项为()A.﹣7 B.7 C.﹣28 D.28参考答案:B【考点】DB:二项式系数的性质.【分析】利用二项展开式的中间项的二项式系数最大,列出方程求出n;利用二项展开式的通项公式求出通项,令x的指数为0求出常数项.【解答】解:依题意,+1=5,∴n=8.二项式为()8,其展开式的通项令解得k=6故常数项为C86()2(﹣)6=7.故选B5.数列满足,则的前60项和为

(

)A.3690

B.1830

C.1845

D.3660

参考答案:B6.用反证法证明命题:“已知a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是()A.方程x2+ax+b=0没有实根B.方程x2+ax+b=0至多有一个实根C.方程x2+ax+b=0至多有两个实根D.方程x2+ax+b=0恰好有两个实根参考答案:A【考点】R9:反证法与放缩法.【分析】直接利用命题的否定写出假设即可.【解答】解:反证法证明问题时,反设实际是命题的否定,∴用反证法证明命题“设a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是:方程x2+ax+b=0没有实根.故选:A.7.已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=()A.﹣4 B.﹣3 C.﹣2 D.﹣1参考答案:D【考点】二项式系数的性质.【专题】概率与统计.【分析】由题意利用二项展开式的通项公式求得展开式中x2的系数为+a?=5,由此解得a的值.【解答】解:已知(1+ax)(1+x)5=(1+ax)(1+x+x2+x3+x4+x5)展开式中x2的系数为+a?=5,解得a=﹣1,故选:D.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.8.已知过点恰能作曲线的两条切线,则的值是

A.

B.

C.

D.或参考答案:D9.曲线在点(0,-1)处的切线方程为(

)A. B. C. D.参考答案:A【分析】求出函数的导数,求得切线的斜率,利用点斜式可得切线的方程,得到结果.【详解】由可得,所以,所以曲线在点处的切线方程为:,故选A.【点睛】该题考查的是有关求曲线在某点处的切线方程的问题,涉及到的知识点有导数的几何意义,直线的方程,属于简单题目.10.已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是()A.相切 B.相交 C.相离 D.不确定参考答案:B【考点】直线与圆的位置关系.【分析】由M在圆外,得到|OM|大于半径,列出不等式,再利用点到直线的距离公式表示出圆心O到直线ax+by=1的距离d,根据列出的不等式判断d与r的大小即可确定出直线与圆的位置关系.【解答】解:∵M(a,b)在圆x2+y2=1外,∴a2+b2>1,∴圆O(0,0)到直线ax+by=1的距离d=<1=r,则直线与圆的位置关系是相交.故选B二、填空题:本大题共7小题,每小题4分,共28分11.(a+x)5展开式中x2的系数为80,则实数a的值为

.参考答案:2【考点】二项式系数的性质.【分析】直接利用二项式定理的展开式的通项公式,求出x2的系数是80,得到方程,求出a的值【解答】解:二项展开式的通项Tr+1=C5ra5﹣rxr,令5﹣r=3可得r=2∴a3C52=80∴a=2故答案为:212.设P是双曲线上除顶点外的任意一点,分别为左右焦点,为半焦距,的内切圆与边切于点M,则的值为___________。参考答案:13.给出下列命题:①命题“若b2-4ac<0,则方程ax2+bx+c=0(a≠0)无实根”的否命题;②命题在“△ABC中,AB=BC=CA,那么△ABC为等边三角形”的逆命题;③命题“若a>b>0,则”的逆否命题;④若“m>1,则mx2-2(m+1)x+(m-3)>0的解集为R”的逆命题.其中真命题的序号为________.参考答案:略14.若关于x的一元二次不等式的解集为R,则实数a的取值范围是

参考答案:(0,1)15.平面几何里有设:直角三角形ABC的两直角边分别为a,b,斜边上的高为h,则+=拓展到空间:设三棱锥A﹣BCD的三个侧棱两两垂直,其长分别为a,b,c,面BCD上的高为h,则有 .参考答案:=【考点】类比推理.【分析】立体几何中的类比推理主要是基本元素之间的类比:平面?空间,点?点或直线,直线?直线或平面,平面图形?平面图形或立体图形,故本题由平面上的直角三角形中的边与高的关系式类比立体中两两垂直的棱的三棱锥中边与高的关系即可.【解答】解:∵A﹣BCD的三个侧棱两两垂直,∴AB⊥平面BCD.由已知有:CD上的高AE=,h=AO=,∴h2=,即=.故答案为:=.16.复数的实部为

,虚部为

。参考答案:,-.17.(5分)已知定义在R上的奇函数y=f(x)在(0,+∞)上单调递增,且f(1)=0,则不等式f(2x﹣1)>0的解集为.参考答案:因为f(x)在(0,+∞)上单调递增且为奇函数,所以f(x)在(﹣∞,0)上也单调递增,f(﹣1)=﹣f(1)=0,作出草图如下所示:由图象知,f(2x﹣1)>0等价于﹣1<2x﹣1<0或2x﹣1>1,解得0<x<或x>1,所以不等式的解集为(0,)∪(1,+∞),故答案为:(0,)∪(1,+∞).根据函数的奇偶性、单调性可作出函数的草图及函数所的零点,根据图象可对不等式等价转化为具体不等式,解出即可.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,四棱锥P﹣ABCD的底面ABCD是矩形,平面PAB⊥平面ABCD,E是PA的中点,且PA=PB=AB=4,.(Ⅰ)求证:PC∥平面EBD;(Ⅱ)求三棱锥A﹣PBD的体积.参考答案:【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定.【分析】(Ⅰ)连接AC,交BD于点O,连接EO,则PC∥EO,由此能证明PC∥平面EBD.(Ⅱ)取AB中点H,连接PH,由V三棱锥A﹣PBD=V三棱锥P﹣ABD,能求出三棱锥A﹣PBD的体积.【解答】证明:(Ⅰ)连接AC,交BD于点O,连接EO,则O是AC的中点.又∵E是PA的中点,∴EO是△PAC的中位线,∴PC∥EO,又∵EO?平面EBD,PC?平面EBD,∴PC∥平面EBD.解:(Ⅱ)取AB中点H,连接PH,由PA=PB得PH⊥AB,又∵平面PAB⊥平面ABCD,且平面PAB∩平面ABCD=AB,∴PH⊥平面ABCD.∵△PAB是边长为4的等边三角形,∴.又∵=,∴V三棱锥A﹣PBD=V三棱锥P﹣ABD=.19.已知方程,求使方程有两个大于的实数根的充要条件。参考答案:解:令,方程有两个大于的实数根即所以其充要条件为略20.(本小题满分14分)已知函数且

(I)试用含的代数式表示;

(Ⅱ)求的单调区间;(Ⅲ)令,设函数在处取得极值,记点,证明:线段与曲线存在异于、的公共点。参考答案:解:(I)依题意,得

由得(Ⅱ)由(I)得

令=0,则或

①当时,

当变化时,与的变化情况如下表:+—+单调递增单调递减单调递增由此得,函数的单调增区间为和,单调减区间为②由时,,此时,恒成立,且仅在处,故函数的单调区间为R③当时,,同理可得函数的单调增区间为和,单调减区间为综上:当时,函数的单调增区间为和,单调减区间为;当时,函数的单调增区间为R;当时,函数的单调增区间为和,单调减区间为略21.(本小题满分12分)已知椭圆的焦点为和,椭圆上一点到两焦点的距离之和为.(Ⅰ)求椭圆的标准方程;(Ⅱ)若直线与椭圆交于两点.当变化时,求面积的最大值(为坐标原点).参考答案:(Ⅰ)设椭圆的标准方程为,

长轴长,,半焦距,.

………2分

椭圆的标准方程为.

………3分(Ⅱ),消去并整理,得.

………5分判别式,解得.由题意,知.………6分

设,,由韦达定理,得,.

………7分设直线与轴的交点为,则.所以面积.

………9分

………11分所以,当,即时,面积取得最大值.

………12分22.已知圆C:(x﹣1)2+(y﹣2)2=4.(1)求直线2x﹣y+4=0被圆C所截得的弦长;(2)求过点M(3,1)的圆C的切线方程.参考答案:【考点】圆的切线方程.【分析】(1)求出圆心C(1,2)到直线2x﹣y+4=0的距离,即可求直线2x﹣y+4=0被圆C所截得的弦长;(2)分类讨论,利用圆心C(1,2)到直线kx﹣y﹣3k+1=0的距离等于r,即可求过点M(3,1)的圆C的切线方程.【解答】解:圆C:(x﹣1)2+(y﹣2)2=4的圆心为(1,2),半径长r=2,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论