2022-2023学年山西省大同市煤矿第二学校数学高一第二学期期末考试模拟试题含解析_第1页
2022-2023学年山西省大同市煤矿第二学校数学高一第二学期期末考试模拟试题含解析_第2页
2022-2023学年山西省大同市煤矿第二学校数学高一第二学期期末考试模拟试题含解析_第3页
2022-2023学年山西省大同市煤矿第二学校数学高一第二学期期末考试模拟试题含解析_第4页
2022-2023学年山西省大同市煤矿第二学校数学高一第二学期期末考试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在正方体中,为棱的中点,则异面直线与所成角的余弦值为()A. B. C. D.2.在等差数列{an}中,若a1+A.8 B.16 C.20 D.283.如图,在矩形中,,,点满足,记,,,则的大小关系为()A. B.C. D.4.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为()A.588 B.480 C.450 D.1205.为了得到函数y=sin(x+A.向左平行移动π3B.向右平行移动π3C.向上平行移动π3D.向下平行移动π36.若,,则的值是()A. B. C. D.7.已知角、是的内角,则“”是“”的()A.充分条件 B.必要条件C.充要条件 D.既不充分也不必要条件8.已知直线3x−y+1=0的倾斜角为α,则A. B.C.− D.9.已知函数,则不等式的解集为()A. B. C. D.10.如图,平行四边形的对角线相交于点,是的中点,的延长线与相交于点,若,,,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列是等比数列,公比为,且,,则_________.12.设函数,则的值为__________.13.数列满足:,,则______.14.在四面体A-BCD中,AB=AC=DB=DC=BC,且四面体A-BCD的最大体积为,则四面体A-BCD外接球的表面积为________.15.圆上的点到直线4x+3y-12=0的距离的最小值是16.如图所示,已知,用表示.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某公司为了提高工效,需分析该公司的产量台与所用时间小时之间的关系,为此做了四次统计,所得数据如下:产品台数台2345所用时间小时34求出y关于x的线性回归方程;预测生产10台产品需要多少小时?18.已知直线l:x+3y﹣2=1.(1)求与l垂直,且过点(1,1)直线方程;(2)求圆心为(4,1),且与直线l相切的圆的方程.19.如图,在平面直角坐标系xOy中,已知以M点为圆心的圆及其上一点.(1)设圆N与y轴相切,与圆M外切,且圆心在直线上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B,C两点且,求直线l的方程.20.(1分)设数列{an}是公比为正数的等比数列,a1=2,a3﹣a2=1.(1)求数列{an}的通项公式;(2)设数列{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn.21.求过点且与圆相切的直线方程.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

利用,得出异面直线与所成的角为,然后在中利用锐角三角函数求出.【详解】如下图所示,设正方体的棱长为,四边形为正方形,所以,,所以,异面直线与所成的角为,在正方体中,平面,平面,,,,,在中,,,因此,异面直线与所成角的余弦值为,故选D.【点睛】本题考查异面直线所成角的计算,一般利用平移直线,选择合适的三角形,利用锐角三角函数或余弦定理求解,考查推理能力与计算能力,属于中等题.2、C【解析】

因为an则a1所以a5故选C.3、C【解析】

可建立合适坐标系,表示出a,b,c的大小,运用作差法比较大小.【详解】以为圆心,以所在直线为轴、轴建立坐标系,则,,,设,则,,,,,,,,故选C.【点睛】本题主要考查学生的建模能力,意在考查学生的理解能力及分析能力,难度中等.4、B【解析】试题分析:根据频率分布直方图,得;该模块测试成绩不少于60分的频率是1-(0.005+0.015)×10=0.8,∴对应的学生人数是600×0.8=480考点:频率分布直方图5、A【解析】试题分析:为得到函数y=sin(x+π3)【考点】三角函数图象的平移【名师点睛】本题考查三角函数图象的平移,函数y=f(x)的图象向右平移a个单位长度得y=f(x-a)的图象,而函数y=f(x)的图象向上平移a个单位长度得y=f(x)+a的图象.左、右平移涉及的是x的变化,上、下平移涉及的是函数值f(x)的变化.6、B【解析】,,,故选B.7、C【解析】

结合正弦定理,利用充分条件和必要条件的定义进行判断【详解】在三角形中,根据大边对大角原则,若,则,由正弦定理得,充分条件成立;若,由可得,根据大边对大角原则,则,必要条件成立;故在三角形中,“”是“”的充要条件故选:C【点睛】本题考查充分条件与必要条件的应用,利用正弦定理确定边角关系,三角形大边对大角原则应谨记,属于基础题8、A【解析】

由题意利用直线的倾斜角和斜率求出tanα的值,再利用三角恒等变换,求出要求式子的值.【详解】直线3x-y+1=0的倾斜角为α,∴tanα=3,

∴,

故选A.【点睛】本题主要考查直线的倾斜角和斜率,三角恒等变换,属于中档题.9、B【解析】

先判断函数的单调性,把转化为自变量的不等式求解.【详解】可知函数为减函数,由,可得,整理得,解得,所以不等式的解集为.故选B.【点睛】本题考查函数不等式,通常根据函数的单调性转化求解,一般不代入解析式.10、B【解析】

先根据勾股定理判断为直角三角形,且,,再根据三角形相似可得,然后由向量的加减的几何意义以及向量的数量积公式计算即可.【详解】,,,,为直角三角形,且,,平行行四边形的对角线相交于点,是的中点,,,,,故选B.【点睛】本题主要考查向量的加减的几何意义以及向量的数量积公式的应用.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】

先利用等比中项的性质计算出的值,然后由可求出的值.【详解】由等比中项的性质可得,得,所以,,,故答案为.【点睛】本题考查等比数列公比的计算,充分利用等比中项和等比数列相关性质的应用,可简化计算,属于中等题.12、【解析】

根据反正切函数的值域,结合条件得出的值.【详解】,且,因此,,故答案为:.【点睛】本题考查反正切值的求解,解题时要结合反正切函数的值域以及特殊角的正切值来求解,考查计算能力,属于基础题.13、【解析】

可通过赋值法依次进行推导,找出数列的周期,进而求解【详解】由,,当时,;当时,;当时,;当时,;当时,,当故数列从开始,以3为周期故故答案为:【点睛】本题考查数列的递推公式,能根据递推公式找出数列的规律是解题的关键,属于中档题14、【解析】

当面ABC面与BCD垂直时,四面体A-BCD的体积最大,根据最大体积为求出四面体的边长,又△ABC和△BCD是等腰直角三角形,所以四面体A-BCD外接球的球心位于的中点,从而得到半径,即可求解.【详解】如图所示:当面ABC面与BCD垂直时,四面体A-BCD的体积最大为,又AB=AC=DB=DC=BC,所以△ABC和△BCD是等腰直角三角形,所以四面体A-BCD外接球的球心为的中点,又,解得,,,所以四面体A-BCD外接球的半径故四面体A-BCD外接球的表面积为.【点睛】本题考查多面体的外接圆及相关计算,多面体外接圆问题关键在圆心和半径.15、【解析】

计算出圆心到直线的距离,减去半径,求得圆上的点到直线的最小距离.【详解】圆的圆心为,半径.圆心到直线的距离为,故最小距离为.【点睛】本小题主要考查圆上的点到直线距离最小值的求法,考查点到直线距离公式,属于基础题.16、【解析】

可采用向量加法和减法公式的线性运算进行求解【详解】由,整理得【点睛】本题考查向量的线性运算,解题关键在于将所有向量通过向量的加法和减法公式转化成基底向量,属于中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)小时【解析】

求出出横标和纵标的平均数,得到样本中心点,求出对应的横标和纵标的积的和,求出横标的平方和,做出系数和的值,写出线性回归方程.将代入回归直线方程,可得结论.【详解】解:由题意,,,于是回归方程;由题意,时,答:根据回归方程,加工能力10个零件,大约需要小时.【点睛】本题考查线性回归方程的求法和应用,考查学生的计算能力,属于中档题.18、(1)3x﹣y﹣2=1;(2)(x﹣4)2+(y﹣1)2.【解析】

(1)根据两直线垂直的性质,设出所求直线的方程,将点坐标代入,由此求得所求直线方程.(2)利用圆心到直线的距离求得圆的半径,由此求得圆的方程.【详解】(1)根据题意,设要求直线的方程为3x﹣y﹣m=1,又由要求直线经过点(1,1),则有3﹣1﹣m=1,解可得m=2;即要求直线的方程为3x﹣y﹣2=1;(2)根据题意,设要求圆的半径为r,若直线l与圆相切,则有r=d,则要求圆的方程为(x﹣4)2+(y﹣1)2.【点睛】本小题主要考查两条直线垂直的知识,考查直线和圆的位置关系,属于基础题.19、(1)(2)或.【解析】

(1)根据由圆心在直线y=6上,可设,再由圆N与y轴相切,与圆M外切得到圆N的半径为和得解.(2)由直线l平行于OA,求得直线l的斜率,设出直线l的方程,求得圆心M到直线l的距离,再根据垂径定理确定等量关系,求直线方程.【详解】(1)圆M的标准方程为,所以圆心M(7,6),半径为5,.由圆N圆心在直线y=6上,可设因为圆N与y轴相切,与圆M外切所以,圆N的半径为从而解得.所以圆N的标准方程为.(2)因为直线l平行于OA,所以直线l的斜率为.设直线l的方程为,即则圆心M到直线l的距离因为而所以解得或.故直线l的方程为或.【点睛】本题主要考查了直线方程,圆的方程,直线与直线,直线与圆,圆与圆的位置关系,还考查了运算求解的能力和数形结合的思想,属于中档题.20、(1)an=2×【解析】试题分析:(1)设出等比数列{an}的公比q,利用条件a1=4,a3﹣a4(4)数列{an+bn}是由一个等差数列和一个等比数列对应项相加得来的,所以可以采用拆项分组的方法,转化为等差数列、等比数列的前n项和问题来解决.试题解析:解:(1)设数列{an}的公比为q,由a1=4,a3﹣a4=1,得:4q4﹣4q﹣1=4,即q4﹣q﹣6=4.解得q=3或q=﹣4,∵q>4,∴q=﹣4不合题意,舍去,故q=3.∴an=4×3n﹣1;(4)∵数列{bn}是首项b1=1,公差d=4的等差数列,∴bn=4n﹣1,∴Sn=(a1+a4++an)+(b

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论