2023年广东省江门市数学高一下期末教学质量检测模拟试题含解析_第1页
2023年广东省江门市数学高一下期末教学质量检测模拟试题含解析_第2页
2023年广东省江门市数学高一下期末教学质量检测模拟试题含解析_第3页
2023年广东省江门市数学高一下期末教学质量检测模拟试题含解析_第4页
2023年广东省江门市数学高一下期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知数列满足,则()A.10 B.20 C.100 D.2002.在中,角A、B、C所对的边分别为a、b、c,若a、b、c成等比数列,且,则()A. B. C. D.3.若,且,则的值是()A. B. C. D.4.如图是一个几何体的三视图,它对应的几何体的名称是()A.棱台 B.圆台 C.圆柱 D.圆锥5.要得到函数的图像,只需要将函数的图像()A.向右平移个长度单位 B.向左平移个长度单位C.向右平移个长度单位 D.向左平移个长度单位6.已知数列的前项和满足.若对任意正整数都有恒成立,则实数的取值范围为()A. B. C. D.7.点是角终边上一点,则的值为()A. B. C. D.8.计算机中常用十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如下表:16进制0123456789ABCDEF10进制0123456789101112131415现在,将十进制整数2019化成16进制数为()A.7E3 B.7F3 C.8E3 D.8F39.Rt△ABC的三个顶点都在一个球面上,两直角边的长分别为6和8,且球心O到平面ABC的距离为12,则球的半径为()A.13 B.12 C.5 D.1010.已知点在第三象限,则角的终边在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题:本大题共6小题,每小题5分,共30分。11.若则____________12.已知向量,若向量与垂直,则等于_______.13.在轴上有一点,点到点与点的距离相等,则点坐标为____________.14.在平面直角坐标系中,定义两点之间的直角距离为:现有以下命题:①若是轴上的两点,则;②已知,则为定值;③原点与直线上任意一点之间的直角距离的最小值为;④若表示两点间的距离,那么.其中真命题是__________(写出所有真命题的序号).15.设变量x、y满足约束条件,则目标函数的最大值为_______.16.对任意实数,不等式恒成立,则实数的取值范围是____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列满足,.(1)若,求证:数列为等比数列.(2)若,求.18.如图,矩形所在平面与以为直径的圆所在平面垂直,为中点,是圆周上一点,且,,.(1)求异面直线与所成角的余弦值;(2)设点是线段上的点,且满足,若直线平面,求实数的值.19.已知函数.(I)比较,的大小.(II)求函数的最大值.20.设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,(Ⅰ)求B的大小;(Ⅱ)若,求的取值范围.21.已知函数.(1)求(x)的最小正周期和单调递增区间;(2)求f(x)在区间上的最大值和最小值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

由题可得数列是以为首相,为公差的等差数列,求出数列的通项公式,进而求出【详解】因为,所以数列是以为首项,为公差的等差数列,所以,则【点睛】本题考查由递推公式证明数列是等差数列以及等差数列的通项公式,属于一般题.2、A【解析】

先由a、b、c成等比数列,得到,再由题中条件,结合余弦定理,即可求出结果.【详解】解:a、b、c成等比数列,所以,​所以,由余弦定理可知,又,所以.故选A.【点睛】本题主要考查解三角形,熟记余弦定理即可,属于常考题型.3、A【解析】

对两边平方,可得,进而可得,再根据,可知,由此即可求出结果.【详解】因为,所以,所以,所以,又,所以所以.故选:A.【点睛】本题主要考查了同角的基本关系,属于基础题.4、B【解析】

直接由三视图还原原几何体得答案.【详解】解:由三视图还原原几何体如图,该几何体为圆台.故选:.【点睛】本题考查三视图,关键是由三视图还原原几何体,属于基础题.5、D【解析】

根据的图像变换规律求解即可【详解】设平移量为,则由,满足:,故由向左平移个长度单位可得到故选:D【点睛】本题考查函数的图像变换规律,属于基础题6、C【解析】

先利用求出数列的通项公式,于是可求出,再利用参变量分离法得到,利用数列的单调性求出数列的最小项的值,可得出实数的取值范围.【详解】当时,,即,得;当时,由,得,两式相减得,得,,所以,数列为等比数列,且首项为,公比为,.,由,得,所以,数列单调递增,其最小项为,所以,,因此,实数的取值范围是,故选C.【点睛】本题考查利用数列前项和求数列的通项,其关系式为,其次考查了数列不等式与参数的取值范围问题,一般利用参变量分离法转化为数列的最值问题来求解,考查化归与转化问题,属于中等题.7、A【解析】

利用三角函数的定义求出的值,然后利用诱导公式可求出的值.【详解】由三角函数的定义可得,由诱导公式可得.故选A.【点睛】本题考查三角函数的定义,同时也考查了利用诱导公式求值,在利用诱导公式求值时,充分理解“奇变偶不变,符号看象限”这个规律,考查计算能力,属于基础题.8、A【解析】

通过竖式除法,用2019除以16,取其余数,再用商除以16,取其余数,直至商为零,将余数逆着写出来即可.【详解】用2019除以16,得余数为3,商为126;用126除以16,得余数为14,商为7;用7除以16,得余数为7,商为0;将余数3,14,7逆着写,即可得7E3.故选:A.【点睛】本题考查进制的转化,只需按照流程执行即可.9、A【解析】

利用勾股定理计算出球的半径.【详解】的斜边长为,所以外接圆的半径为,所以球的半径为.故选:A【点睛】本小题主要考查勾股定理计算,考查球的半径有关计算,属于基础题.10、B【解析】

根据同角三角函数间基本关系和各象限三角函数符号的情况即可得到正确选项.【详解】因为点在第三象限,则,,所以,则可知角的终边在第二象限.故选:B.【点睛】本题考查各象限三角函数符号的判定,属基础题.相关知识总结如下:第一象限:;第二象限:;第三象限:;第四象限:.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】因为,所以=.故填.12、2【解析】

根据向量的数量积的运算公式,列出方程,即可求解.【详解】由题意,向量,因为向量与垂直,所以,解得.故答案为:2.【点睛】本题主要考查了向量的坐标运算,以及向量的垂直关系的应用,着重考查了推理与运算能力,属于基础题.13、【解析】

设点的坐标,根据空间两点距离公式列方程求解.【详解】由题:设,点到点与点的距离相等,所以,,,解得:,所以点的坐标为.故答案为:【点睛】此题考查空间之间坐标系中两点的距离公式,根据公式列方程求解点的坐标,关键在于准确辨析正确计算.14、①②④【解析】

根据新定义的直角距离,结合具体选项,进行逐一分析即可.【详解】对①:因为是轴上的两点,故,则,①正确;对②:根据定义因为,故,②正确;对③:根据定义,当且仅当时,取得最小值,故③错误;对④:因为,由不等式,即可得,故④正确.综上正确的有①②④故答案为:①②④.【点睛】本题考查新定义问题,涉及同角三角函数关系,绝对值三角不等式,属综合题.15、3【解析】

可通过限定条件作出对应的平面区域图,再根据目标函数特点进行求值【详解】可行域如图所示;则可化为,由图象可知,当过点时,有最大值,则其最大值为:故答案为:3.【点睛】线性规划问题关键是能正确画出可行域,目标函数可由几何意义确定具体含义(最值或斜率)16、【解析】

分别在和两种情况下进行讨论,当时,根据二次函数图像可得不等式组,从而求得结果.【详解】①当,即时,不等式为:,恒成立,则满足题意②当,即时,不等式恒成立则需:解得:综上所述:本题正确结果:【点睛】本题考查不等式恒成立问题的求解,易错点是忽略不等式是否为一元二次不等式,造成丢根;处理一元二次不等式恒成立问题的关键是结合二次函数图象来得到不等关系,属于常考题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)答案见解析【解析】

(1)证明即可;(2)化简,讨论,和即可求解【详解】因为,所以,所以.又所以数列是以3为首项,9为公比的等比数列.(2)因为,所以,所以:当时,当时,.当时,.【点睛】本题考查等比数列的证明,极限的运算,注意分类讨论的应用,是中档题18、(1);(2)1【解析】

(1)取中点,连接,即为所求角。在中,易得MC,NC的长,MN可在直角三角形中求得。再用余弦定理易求得夹角。(2)连接,连接和交于点,连接,易得,所以为的中位线,所以为中点,所以的值为1。【详解】(1)取中点,连接因为为矩形,分别为中点,所以所以异面直线与所成角就是与所成的锐角或直角因为平面平面,平面平面矩形中,,平面所以平面又平面,所以中,,所以又是圆周上点,且,所以中,,由余弦定理可求得所以异面直线与所成角的余弦值为(2)连接,连接和交于点,连接因为直线平面,直线平面,平面平面所以矩形的对角线交点为中点所以为的中位线,所以为中点又,所以的值为1【点睛】(1)异面直线所成夹角一般是要平移到一个平面。(2)通过几何关系确定未知点的位置,再求解线段长即可。19、(I);(II)时,函数取得最大值【解析】试题分析:(1)将f(),f()求出大小后比较即可.(2)根据三角函数二倍角公式将f(x)化简,最终化得一个二次函数,根据二次函数的单调性,由此得到最大值.解:(I)因为所以因为,所以(II)因为令,,所以,因为对称轴,根据二次函数性质知,当时,函数取得最大值.20、(1)(2)【解析】

(Ⅰ)由条件利用正弦定理求得sinB的值,可得B的值(Ⅱ)使用正弦定理用sinA,sinC表示出a,c,得出a+c关于A的三角函数,根据A的范围和正弦函数的性质得出a+c的最值.【详解】解(Ⅰ)锐角又,,由正弦定理得,∴.

∴的取值范围为【点睛】本题主要考查正弦定理,余弦定理的应用,基本不等式的应用,属于基础题.21、(1),的增区间是.(2).【解析】试题分析:(1)利用两角和正弦公式和降幂公式化简,得到的形式,利用公式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论