2022-2023学年河北省唐山市路北区唐山一中高一数学第二学期期末质量检测试题含解析_第1页
2022-2023学年河北省唐山市路北区唐山一中高一数学第二学期期末质量检测试题含解析_第2页
2022-2023学年河北省唐山市路北区唐山一中高一数学第二学期期末质量检测试题含解析_第3页
2022-2023学年河北省唐山市路北区唐山一中高一数学第二学期期末质量检测试题含解析_第4页
2022-2023学年河北省唐山市路北区唐山一中高一数学第二学期期末质量检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,内角的对边分别为,且,,若,则()A.2 B.3 C.4 D.2.设,函数在区间上是增函数,则()A. B.C. D.3.已知数列满足,,且,则A.4 B.5 C.6 D.84.在中,是的中点,,,相交于点,若,,则()A.1 B.2 C.3 D.45.等比数列的前n项和为,已知,则A. B. C. D.6.若,,且与夹角为,则()A.3 B. C.2 D.7.直线x-2y+2=0关于直线x=1对称的直线方程是()A.x+2y-4=0 B.2x+y-1=0 C.2x+y-3=0 D.2x+y-4=08.不等式的解集是A.或 B.或C. D.9.设等比数列的前项和为,且,则()A.255 B.375 C.250 D.20010.已知角、是的内角,则“”是“”的()A.充分条件 B.必要条件C.充要条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.若,其中是第二象限角,则____.12.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件,为了了解它们的产品质量是否存在显著差异,用分层抽样的方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=.13.已知a,b,x均为正数,且a>b,则____(填“>”、“<”或“=”).14.已知点和点,点在轴上,若的值最小,则点的坐标为______.15.已知正三角形的边长是2,点为边上的高所在直线上的任意一点,为射线上一点,且.则的取值范围是____16.已知数列的通项公式是,若将数列中的项从小到大按如下方式分组:第一组:,第二组:,第三组:,…,则2018位于第________组.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.土笋冻是闽南种广受欢迎的特色传统风味小吃某小区超市销售一款土笋冻,进价为每个15元,售价为每个20元.销售的方案是当天进货,当天销售,未售出的全部由厂家以每个10元的价格回购处理.根据该小区以往的销售情况,得到如图所示的频率分布直方图:(1)估算该小区土笋冻日需求量的平均数(同一组中的数据用该组区间的中点值代表);(2)已知该超市某天购进了150个土笋冻,假设当天的需求量为个销售利润为元.(i)求关于的函数关系式;(ii)结合上述频率分布直方图,以额率估计概率的思想,估计当天利润不小于650元的概率.18.设集合,,求.19.△ABC的内角A,B,C所对边分别为,已知△ABC面积为.(1)求角C;(2)若D为AB中点,且c=2,求CD的最大值.20.已知.若三点共线,求实数的值.21.甲,乙两机床同时加工直径为100cm的零件,为检验质量,各从中抽取6件测量的数据为:甲:99,100,98,100,100,103乙:99,100,102,99,100,100(1)分别计算两组数据的平均数及方差(2)根据计算结果判断哪台机床加工零件的质量更稳定.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

利用正弦定理化简,由此求得的值.利用三角形内角和定理和两角和与差的正弦公式化简,由此求得的值,进而求得的值.【详解】利用正弦定理化简得,所以为锐角,且.由于,所以由得,化简得.若,则,故.若,则,由余弦定理得,解得.综上所述,,故选B.【点睛】本小题主要考查正弦定理、余弦定理解三角形,考查同角三角函数的基本关系式,考查三角形内角和定理,考查两角和与差的正弦公式,属于中档题.2、C【解析】

首先比较自变量与的大小,然后利用单调性比较函数值与的大小.【详解】因为,函数在区间上是增函数,所以.故选C.【点睛】已知函数单调性比较函数值大小,可以借助自变量的大小来比较函数值的大小.3、B【解析】

利用,,依次求,观察归纳出通项公式,从而求出的值.【详解】∵数列满足,,,∴,∴,∴,,∴,∴,……,∵,,,,…….,由此归纳猜想,∴.故选B.【点睛】本题考查了一个教复杂的递推关系,本题的难点在于数列的项位于指数位置,不易化简和转化,一般的求通项方法无法解决,当遇见这种情况时一般我们就可以用“归纳”的方法处理,即通过求几项,然后观察规律进而得到结论.4、D【解析】由题意知,所以,解得,所以,故选D.5、A【解析】设公比为q,则,选A.6、B【解析】

由题意利用两个向量数量积的定义,求得的值,再根据,计算求得结果.【详解】由题意若,,且与夹角为,可得,.故选:B.【点睛】本题考查向量数量积的定义、向量的模的方法,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意不要错选成A答案.7、A【解析】

所求直线的斜率与直线x-2y+2=0的斜率互为相反数,且在x=1处有公共点,求解即可。【详解】直线x-2y+2=0与直线x=1的交点为P1,3因为直线x-2y+2=0的斜率为12,所以所求直线的斜率为-故所求直线方程为y-32=-故答案为A.【点睛】本题考查了直线的斜率,直线的方程,直线关于直线的对称问题,属于基础题。8、C【解析】

把原不等式化简为,即可求解不等式的解集.【详解】由不等式即,即,得,则不等式的解集为,故选C.【点睛】本题主要考查了一元二次不等式的求解,其中把不等式对应的一元二次方程能够因式分解,即能够转化为几个代数式的乘积形式是解答的关键,着重考查了推理与运算能力,属于基础题.9、A【解析】

由等比数列的性质,仍是等比数列,先由是等比数列求出,再由是等比数列,可得.【详解】由题得,成等比数列,则有,,解得,同理有,,解得.故选:A【点睛】本题考查等比数列前n项和的性质,这道题也可以先由求出数列的首项和公比q,再由前n项和公式直接得。10、C【解析】

结合正弦定理,利用充分条件和必要条件的定义进行判断【详解】在三角形中,根据大边对大角原则,若,则,由正弦定理得,充分条件成立;若,由可得,根据大边对大角原则,则,必要条件成立;故在三角形中,“”是“”的充要条件故选:C【点睛】本题考查充分条件与必要条件的应用,利用正弦定理确定边角关系,三角形大边对大角原则应谨记,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

首先要用诱导公式得到角的正弦值,根据角是第二象限的角得到角的余弦值,再用诱导公式即可得到结果.【详解】解:,又是第二象限角故,故答案为.【点睛】本题考查同角的三角函数的关系,本题解题的关键是诱导公式的应用,熟练应用诱导公式是解决三角函数问题的必备技能,属于基础题.12、13【解析】(解法1)由分层抽样得,解得n=13.(解法2)从甲乙丙三个车间依次抽取a,b,c个样本,则120∶80∶60=a∶b∶3a=6,b=4,所以n=a+b+c=13.13、<【解析】

直接利用作差比较法解答.【详解】由题得,因为a>0,x+a>0,b-a<0,x>0,所以所以.故答案为<【点睛】本题主要考查作差比较法,意在考查学生对这些知识的理解掌握水平和分析推理能力.14、【解析】

作出图形,作点关于轴的对称点,由对称性可知,结合图形可知,当、、三点共线时,取最小值,并求出直线的方程,与轴方程联立,即可求出点的坐标.【详解】如下图所示,作点关于轴的对称点,由对称性可知,则,当且仅当、、三点共线时,的值最小,直线的斜率为,直线的方程为,即,联立,解得,因此,点的坐标为.故答案为:.【点睛】本题考查利用折线段长的最小值求点的坐标,涉及两点关于直线对称性的应用,考查数形结合思想的应用,属于中等题.15、【解析】

以AB所在的直线为x轴,以AB的中点为坐标原点,AB的垂线为y轴,建立平面直角坐标系,求出A.C,P,Q的坐标,运用平面向量的坐标表示和性质,求出的表达式,利用判别式法求出的取值范围.【详解】以AB所在的直线为x轴,以AB的中点为坐标原点,AB的垂线为y轴,建立平面直角坐标系,如下图所示:,设,,设,可得,由,可得即,,令,可得,当时,成立,当时,,即,,即,所以的取值范围是.【点睛】本题考查了平面向量数量积的性质和运算,考查了平面向量模的取值范围,构造函数,利用判别式法求函数的最值是解题的关键.16、1【解析】

根据题意可分析第一组、第二组、第三组、…中的数的个数及最后的数,从中寻找规律使问题得到解决.【详解】根据题意:第一组有2=1×2个数,最后一个数为4;第二组有4=2×2个数,最后一个数为12,即2×(2+4);第三组有6=2×3个数,最后一个数为24,即2×(2+4+6);…∴第n组有2n个数,其中最后一个数为2×(2+4+…+2n)=4(1+2+3+…+n)=2n(n+1).∴当n=31时,第31组的最后一个数为2×31×1=1984,∴当n=1时,第1组的最后一个数为2×1×33=2112,∴2018位于第1组.故答案为1.【点睛】本题考查观察与分析问题的能力,考查归纳法的应用,从有限项得到一般规律是解决问题的关键点,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(i)();(ii)【解析】

(1)设日需求量为,直接利用频率分布图中的平均数公式估算该小区土笋冻日需求量的平均数;(2)(i)分类讨论得();(ii)由(i)可知,利润,当且仅当日需求量,再利用互斥事件的概率和公式求解.【详解】解:(1)设日需求量为,依题意的频率为;的频率为;的频率为;的频率为.则与的频率为.故该小区土笋冻日需求量的平均数,.(2)(i)当时,;当时,.故()(ii)由(i)可知,利润,当且仅当日需求量.由频率分布直方图可知,日需求量的频率约为,以频率估计概率的思想,估计当天利润不小于元的概率为.【点睛】本题主要考查频率分布直方图中平均数的计算和分段函数解析式的求法,考查互斥事件的概率的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.18、【解析】

首先求出集合,,再根据集合的运算求出即可.【详解】因为的解为(舍去),所以,又因为的解为,所以,所以.【点睛】本题考查了集合的运算,对数与指数的运算,属于基础题.19、(1)(2)【解析】

(1)根据,由正弦定理化角为边,得,再根据余弦定理即可求出角C;(2)由余弦定理可得,又,结合基本不等式可求得.由中点公式的向量式得,再利用数量积的运算,即可求出的最大值.【详解】(1)依题意得,,由正弦定理得,,即,由余弦定理得,,又因为,所以.(2)∵,,∴,即.∵为中点,所以,∴当且仅当时,等号成立.所以的最大值为.【点睛】本题主要考查利用正、余弦定理解三角形,以及利用中点公式的向量式结合基本不等式解决中线的最值问题,意在考查学生的逻辑推理和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论