2023年辽宁省大连金州高级中学高一数学第二学期期末达标检测试题含解析_第1页
2023年辽宁省大连金州高级中学高一数学第二学期期末达标检测试题含解析_第2页
2023年辽宁省大连金州高级中学高一数学第二学期期末达标检测试题含解析_第3页
2023年辽宁省大连金州高级中学高一数学第二学期期末达标检测试题含解析_第4页
2023年辽宁省大连金州高级中学高一数学第二学期期末达标检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是定义在上的奇函数,且当时,,那么()A. B. C. D.2.已知变量与正相关,且由观测数据算得样本平均数,,则由该观测的数据算得的线性回归方程可能是()A. B.C. D.3.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为A. B.C. D.4.如图为A、B两名运动员五次比赛成绩的茎叶图,则他们的平均成绩和方差的关系是()A., B.,C., D.,5.若实数满足不等式组,则的最小值是()A. B.0 C.1 D.26.已知角的终边经过点,则()A. B. C.-2 D.7.若关于x,y的方程组无解,则()A. B. C.2 D.8.已知数列的通项公式,前n项和为,若,则的最大值是()A.5 B.10 C.15 D.209.设,,则的值可表示为()A. B. C. D.10.某程序框图如图所示,则该程序运行后输出的值是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.中国古代数学著作《算法统宗》有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人要走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后达到目的地.”则该人最后一天走的路程为__________里.12.计算:__________.13.已知锐角的外接圆的半径为1,,则的面积的取值范围为_____.14.设α为第二象限角,若sinα=3515.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.16.在等比数列中,,公比,若,则的值为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列{bn}的前n项和,n∈N*.(1)求数列{bn}的通项公式;(2)记,求数列{cn}的前n项和Sn;(3)在(2)的条件下,记,若对任意正整数n,不等式恒成立,求整数m的最大值.18.某制造商3月生产了一批乒乓球,从中随机抽样133个进行检查,测得每个球的直径(单位:mm),将数据分组如下:分组

频数

频率

[1.95,1.97)

13

[1.97,1.99)

23

[1.99,2.31)

53

[2.31,2.33]

23

合计

133

(Ⅰ)请在上表中补充完成频率分布表(结果保留两位小数),并在图中画出频率分布直方图;(Ⅱ)若以上述频率作为概率,已知标准乒乓球的直径为2.33mm,试求这批球的直径误差不超过3.33mm的概率;(Ⅲ)统计方法中,同一组数据经常用该组区间的中点值(例如区间[1.99,2.31)的中点值是2.33作为代表.据此估计这批乒乓球直径的平均值(结果保留两位小数).19.已知数列满足:,,.(1)求证:数列为等差数列,并求出数列的通项公式;(2)记(),用数学归纳法证明:,20.如图,在四棱锥中,底面,,,,,点为棱的中点.(1)证明:;(2)求三棱锥的体积.21.已知是一个公差大于的等差数列,且满足,数列满足等式:(1)求数列的通项公式;(2)求数列的前项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】试题分析:由题意得,,故,故选C.考点:分段函数的应用.2、A【解析】试题分析:因为与正相关,排除选项C、D,又因为线性回归方程恒过样本点的中心,故排除选项B;故选A.考点:线性回归直线.3、D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为,所以,又,则故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列.等比数列的判断方法主要有如下两种:(1)定义法,若()或(),数列是等比数列;(2)等比中项公式法,若数列中,且(),则数列是等比数列.4、D【解析】

根据题中数据,直接计算出平均值与方差,即可得出结果.【详解】由题中数据可得,,,所以;又,,所以.故选D【点睛】本题主要考查平均数与方差的比较,熟记公式即可,属于基础题型.5、A【解析】

画出不等式组的可行域,再根据线性规划的方法,结合的图像与的关系判定最小值即可.【详解】画出可行域,又求最小值时,故的图形与可行域有交点,且往上方平移到最高点处.易得此时在处取得最值.故选:A【点睛】本题主要考查了线性规划与绝对值函数的综合运用,需要根据题意画图,根据函数的图形性质分析.属于中档题.6、B【解析】按三角函数的定义,有.7、A【解析】

由题可知直线与平行,再根据平行公式求解即可.【详解】由题,直线与平行,故.故选:A【点睛】本题主要考查了二元一次方程组与直线间的位置关系,属于基础题.8、B【解析】

将的通项公式分解因式,判断正负分界处,进而推断的最大最小值得到答案.【详解】数列的通项公式当时,当或是最大值为或最小值为或的最大值为故答案为B【点睛】本题考查了前n项和为的最值问题,将其转化为通项公式的正负问题是解题的关键.9、A【解析】

由,可得到,然后根据反余弦函数的图象与性质即可得到答案.【详解】因为,所以,则.故选:A【点睛】本题主要考查反余弦函数的运用,熟练掌握反余弦函数的概念及性质是解决本题的关键.10、D【解析】

由题意首先确定流程图的功能,然后结合三角函数的性质求解所要输出的结果即开即可.【详解】根据程序框图知,该算法的目标是计算和式:.又因为,注意到,故:.故选:D.【点睛】识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】分析:每天走的路形成等比数列{an},q=,S3=1.利用求和公式即可得出.详解:每天走的路形成等比数列{an},q=,S3=1.∴S3=1=,解得a1=2.∴该人最后一天走的路程=a1q5==3.故答案为:3.点睛:本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于基础题.12、0【解析】

直接利用数列极限的运算法则,分子分母同时除以,然后求解极限可得答案.【详解】解:,故答案为:0.【点睛】本题主要考查数列极限的运算法则,属于基础知识的考查.13、【解析】

由已知利用正弦定理可以得到b=2sinB,c=2sin(﹣B),利用三角形面积公式,三角函数恒等变换的应用可求S△ABC═sin(2B﹣)+,由锐角三角形求B的范围,进而利用正弦函数的图象和性质即可得解.【详解】解:∵锐角△ABC的外接圆的半径为1,A=,∴由正弦定理可得:,可得:b=2sinB,c=2sin(﹣B),∴S△ABC=bcsinA=×2sinB×2sin(﹣B)×=sinB(cosB+sinB)=sin(2B﹣)+,∵B,C为锐角,可得:<B<,<2B﹣<,可得:sin(2B﹣)∈(,1],∴S△ABC=sin(2B﹣)+∈(1,].故答案为:(1,].【点睛】本题主要考查了正弦定理,三角形面积公式,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了计算能力和转化思想,属于中档题.14、-【解析】

先求出cosα,再利用二倍角公式求sin2α【详解】因为α为第二象限角,若sinα=所以cosα=所以sin2α故答案为-【点睛】本题主要考查同角三角函数的平方关系,考查二倍角的正弦公式,意在考查学生对这些知识的理解掌握水平,属于基础题.15、1.98.【解析】

本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【详解】由题意得,经停该高铁站的列车正点数约为,其中高铁个数为11+21+11=41,所以该站所有高铁平均正点率约为.【点睛】本题考点为概率统计,渗透了数据处理和数学运算素养.侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.16、1【解析】

因为,,故答案为1.考点:等比数列的通项公式.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)bn=3n﹣2,n∈N*.(2);(3)最大值为1.【解析】

(1)利用,求得数列的通项公式.(2)利用裂项求和法求得数列的前项和.(3)由(2)求得的表达式,记不等式左边为,利用差比较法判断出的单调性,进而求得的最小值,由此列不等式求得的取值范围,进而求得整数的最大值.【详解】(1)∵数列{bn}的前n项和,n∈N*.∴①当n=1时,b1=T1=1;②当n≥2时,bn=Tn﹣Tn﹣1=3n﹣2;∴bn=3n﹣2,n∈N*.(2)由(1)可得:;∴Sn=c1+c2+…+cn,,,;(3)由(2)可知:n;∴;设f(n);则f(n+1)﹣f(n)=()﹣()0;所以f(n+1)>f(n),故f(n)的最小值为f(1);∵对任意正整数n,不等式恒成立,∴恒成立,即m<12;故整数m的最大值为1.【点睛】本小题主要考查已知求,考查裂项求和法,考查数列单调性的判断方法,考查不等式恒成立问题的求解,属于中档题.18、(Ⅰ)见解析;(Ⅱ)3.9;(Ⅲ)【解析】试题分析:(Ⅰ)根据公式:频率=频数÷样本容量可补充完成频率分布表,然后作出频率分布直方图;(Ⅱ)直径误差不超过3.33mm的频率有3.53,3.53,3.53,所以这批球的直径误差不超过3.33mm的概率3.53+3.53+3.53=3.9;(Ⅲ)由平均值公式可求得试题解析:(Ⅰ)分组

频数

频率

[4.95,4.97)

43

3.43

[4.97,4.99)

53

3.53

[4.99,5.34)

53

3.53

[5.34,5.33]

53

3.53

合计

433

4

(Ⅱ)设误差不超过3.33的事件为,则.(Ⅲ)考点:4.频率分布直方图;5.求数值的平均值19、(1)证明见解析,;(2)见解析【解析】

(1)定义法证明:;(2)采用数学归纳法直接证明(注意步骤).【详解】由可知:,则有,即,所以为等差数列,且首相为,公差,所以,故;(2),当时,成立;假设当时,不等式成立则:;当时,,因为,所以,则,故时不等式成立,综上可知:.【点睛】数学归纳法的一般步骤:(1)命题成立;(2)假设命题成立;(3)证明命题成立(一定要借助假设,否则不能称之为数学归纳法).20、(1)见解析;(2)【解析】

(1)以A为坐标原点,建立如图所示的空间直角坐标系,求出BE,DC的方向向量,根据•=0,可得BE⊥DC;(2)由点为棱的中点,且底面,利用等体积法得.【详解】(1)∵底面,,以为坐标原点,建立如图所示的空间直角坐标系,∵,,点为棱的中点.∴(1,0,0),(2,2,0),(0,2,0),(0,0,2),(1,1,1)∴=(0,1,1),=(2,0,0),∵•=0,可得BE⊥DC;(2)由点为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论