2023年湖南省凤凰县凤凰皇仓中学数学高一下期末学业水平测试模拟试题含解析_第1页
2023年湖南省凤凰县凤凰皇仓中学数学高一下期末学业水平测试模拟试题含解析_第2页
2023年湖南省凤凰县凤凰皇仓中学数学高一下期末学业水平测试模拟试题含解析_第3页
2023年湖南省凤凰县凤凰皇仓中学数学高一下期末学业水平测试模拟试题含解析_第4页
2023年湖南省凤凰县凤凰皇仓中学数学高一下期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,函数与坐标轴的三个交点P,Q,R满足,,M为QR的中点,,则A的值为()A. B. C. D.2.设集合,,若存在实数t,使得,则实数的取值范围是()A. B. C. D.3.在中,,且面积为1,则下列结论不正确的是()A. B. C. D.4.已知是第二象限角,且,则的值为A. B. C. D.5.若集合,则集合()A. B. C. D.6.已知全集,则集合A. B. C. D.7.设矩形的长为,宽为,其比满足∶=,这种矩形给人以美感,称为黄金矩形.黄金矩形常应用于工艺品设计中.下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.5980.6250.6280.5950.639乙批次:0.6180.6130.5920.6220.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是A.甲批次的总体平均数与标准值更接近B.乙批次的总体平均数与标准值更接近C.两个批次总体平均数与标准值接近程度相同D.两个批次总体平均数与标准值接近程度不能确定8.甲、乙两位同学在高一年级的5次考试中,数学成绩统计如茎叶图所示,若甲、乙两人的平均成绩分别是,则下列叙述正确的是()A.,乙比甲成绩稳定B.,甲比乙成绩稳定C.,乙比甲成绩稳定D.,甲比乙成绩稳定9.设,为两个平面,则能断定∥的条件是()A.内有无数条直线与平行 B.,平行于同一条直线C.,垂直于同一条直线 D.,垂直于同一平面10.已知扇形的圆心角为120°,半径为6,则扇形的面积为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知x、y、z∈R,且,则的最小值为.12.公比为2的等比数列的各项都是正数,且,则的值为___________13.若两个向量与的夹角为,则称向量“”为向量的“外积”,其长度为.若已知,,,则.14.在数列{}中,,则____.15.已知直线与轴、轴相交于两点,点在圆上移动,则面积的最大值和最小值之差为.16.在中,已知,则下列四个不等式中,正确的不等式的序号为____________①②③④三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,内角A,B,C所对的边分别为a,b,c;已知.(1)求角B的大小;(2)若外接圆的半径为2,求面积的最大值.18.在中,角,,的对边分别为,,,且.(1)求角的大小;(2)若,的面积为,求边的长.19.已知等差数列的前n项和为,且,.(1)求;(2)求.20.2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有人,现采用分层抽样的方法,从该单位上述员工中抽取人调查专项附加扣除的享受情况.(Ⅰ)应从老、中、青员工中分别抽取多少人?(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为.享受情况如下表,其中“”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.员工项目ABCDEF子女教育○○×○×○继续教育××○×○○大病医疗×××○××住房贷款利息○○××○○住房租金××○×××赡养老人○○×××○(i)试用所给字母列举出所有可能的抽取结果;(ii)设为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件发生的概率.21.总书记在党的十九大报告中指出,要在“幼有所育、学有所教、劳有所得、病有所医、老有所养、住有所居、弱有所扶”上不断取得新进展,保证全体人民在共建共享发展中有更多获得感.现S市政府针对全市10所由市财政投资建设的敬老院进行了满意度测评,得到数据如下表:敬老院ABCDEFGHIK满意度x(%)20342519262019241913投资原y(万元)80898978757165626052(1)求投资额关于满意度的相关系数;(2)我们约定:投资额关于满意度的相关系数的绝对值在0.75以上(含0.75)是线性相关性较强,否则,线性相关性较弱.如果没有达到较强线性相关,则采取“末位淘汰”制(即满意度最低的敬老院市财政不再继续投资,改为区财政投资).求在剔除“末位淘汰”的敬老院后投资额关于满意度的线性回归方程(系数精确到0.1)参考数据:,,,,.附:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为:.线性相关系数.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

用周期表示出点坐标,从而又可得点坐标,再求出点坐标后利用求得,得.【详解】记函数的周期,则,因为,∴,是中点,则,∴,解得,∴,由得,∵,∴,,,∴,故选:D.【点睛】本题考查求三角函数的解析式,掌握正弦函数的图象与性质是解题关键.2、C【解析】

得到圆心距与半径和差关系得到答案.【详解】圆心距存在实数t,使得故答案选C【点睛】本题考查了两圆的位置关系,意在考查学生的计算能力.3、C【解析】

根据三角形面积公式列式,求得,再根据基本不等式判断出C选项错误.【详解】根据三角形面积为得,三个式子相乘,得到,由于,所以.所以,故C选项错误.所以本小题选C.【点睛】本小题主要考查三角形面积公式,考查基本不等式的运用,属于中档题.4、B【解析】试题分析:因为是第二象限角,且,所以.考点:两角和的正切公式.5、D【解析】试题分析:作数轴观察易得.考点:集合的基本运算.6、C【解析】

直接利用集合补集的定义求解即可.【详解】因为全集,所以0,2属于全集且不属于集合A,所以集合,故选:C.【点睛】本题主要考查集合补集的定义,属于基础题.7、A【解析】甲批次的平均数为0.617,乙批次的平均数为0.6138、C【解析】甲的平均成绩,甲的成绩的方差;乙的平均成绩,乙的成绩的方差.∴,乙比甲成绩稳定.故选C.9、C【解析】

对四个选项逐个分析,可得出答案.【详解】对于选项A,当,相交于直线时,内有无数条直线与平行,即A错误;对于选项B,当,相交于直线时,存在直线满足:既与平行又不在两平面内,该直线平行于,,故B错误;对于选项C,设直线AB垂直于,平面,垂足分别为A,B,假设与不平行,设其中一个交点为C,则三角形ABC中,,显然不可能成立,即假设不成立,故与平行,故C正确;对于选项D,,垂直于同一平面,与可能平行也可能相交,故D错误.【点睛】本题考查了面面平行的判断,考查了学生的空间想象能力,属于中档题.10、C【解析】

根据扇形的面积公式即可求得.【详解】解:由题意:,所以扇形的面积为:故选:C【点睛】本题考查扇形的面积公式,考查运算求解能力,核心是记住公式.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:由柯西不等式,,因为.所以,当且仅当,即时取等号.所以的最小值为.考点:柯西不等式12、2【解析】

根据等比数列的性质与基本量法求解即可.【详解】由题,因为,又等比数列的各项都是正数,故.故.故答案为:【点睛】本题主要考查了等比数列的等积性与各项之间的关系.属于基础题.13、3【解析】

故答案为3.【点评】本题主要考查以向量的数量积为载体考查新定义,利用向量的数量积转化是解决本题的关键,14、1【解析】

直接利用等比数列的通项公式得答案.【详解】解:在等比数列中,由,公比,得.故答案为:1.【点睛】本题考查等比数列的通项公式,是基础题.15、15【解析】

解:设作出与已知直线平行且与圆相切的直线,

切点分别为,如图所示

则动点C在圆上移动时,若C与点重合时,

△ABC面积达到最小值;而C与点重合时,△ABC面积达到最大值

∵直线3x+4y−12=0与x轴、y轴相交于A(4,0)、B(0,3)两点

可得∴△ABC面积的最大值和最小值之差为

其中分别为点、点到直线AB的距离

∵是圆(x−5)2+(y−6)2=9的两条平行切线与圆的切点

∴点、点到直线AB的距离之差等于圆的直径,即

因此△ABC面积的最大值和最小值之差为

故答案为:1516、②③【解析】

根据,分当和两种情况分类讨论,每一类中利用正、余弦函数的单调性判断,特别注意,当时,.【详解】当时,在上是增函数,因为,所以,因为在上是减函数,且,所以,当时,且,因为在上是减函数,所以,而,所以.故答案为:②③【点睛】本题主要考查了正弦函数与余弦函数的单调性在三角形中的应用,还考查了运算求解的能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)利用正弦定理与余弦的差角公式运算求解即可.(2)根据正弦定理可得,再利用余弦定理与基本不等式求得再代入面积求最大值即可.【详解】解:(1)在中,由正弦定理得,得,又∴.即,∴,又,∴.(2)结合(1)由正弦定理可知,由余弦定理可知,所以当且仅当时等号成立,所以,所以面积的最大值为.【点睛】本题主要考查了正余弦定理与三角形面积公式在解三角形中的运用.同时考查了根据基本不等式求解三角形面积的最值问题.属于中档题.18、(1)(2)【解析】

(1)利用正弦定理实现边角转化,逆用两角和的正弦公式,进行化简,最后可求出角的大小;(2)利用面积公式结合,可以求出的值,再利用余弦定理可以求出边的长.【详解】(1)在中,由正弦定理得,,故,,,代入,并两边同除以,得:,即,因为在中,,所以,故,又由可得,所以,同样由得:.(2)因为的面积为,所以,又由(1)得:,所以,,又,所以,.由余弦定理得:所以.【点睛】本题考查了了正弦定理的应用,考查了面积公式,考查了利用余弦定理求边长,考查了数学运算能力.19、(1);(2)【解析】

(1)由可求得公差,利用等差数列通项公式求得结果;(2)利用等差数列前项和公式可求得结果.【详解】(1)设等差数列公差为,则,解得:(2)由(1)知:【点睛】本题考查等差数列通项公式和前项和的求解问题,考查基础公式的应用,属于基础题.20、(I)6人,9人,10人;(II)(i)见解析;(ii).【解析】

(I)根据题中所给的老、中、青员工人数,求得人数比,利用分层抽样要求每个个体被抽到的概率是相等的,结合样本容量求得结果;(II)(I)根据6人中随机抽取2人,将所有的结果一一列出;(ii)根据题意,找出满足条件的基本事件,利用公式求得概率.【详解】(I)由已知,老、中、青员工人数之比为,由于采取分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人,9人,10人.(II)(i)从已知的6人中随机抽取2人的所有可能结果为,,,,共15种;(ii)由表格知,符合题意的所有可能结果为,,,,共11种,所以,事件M发生的概率.【点睛】本小题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型即其概率计算公式等基本知识,考查运用概率知识解决简单实际问题的能力.21、(1)0.72;(2)【解析】

(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论