黑龙江省绥化市望奎县第二中学2023年高一数学第二学期期末监测试题含解析_第1页
黑龙江省绥化市望奎县第二中学2023年高一数学第二学期期末监测试题含解析_第2页
黑龙江省绥化市望奎县第二中学2023年高一数学第二学期期末监测试题含解析_第3页
黑龙江省绥化市望奎县第二中学2023年高一数学第二学期期末监测试题含解析_第4页
黑龙江省绥化市望奎县第二中学2023年高一数学第二学期期末监测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.计算:A. B. C. D.2.已知角的终边经过点,则=()A. B. C. D.3.将函数的图象向左平移个单位长度,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,若对任意的均有成立,则的最小值为()A. B. C. D.4.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A.中位数 B.平均数C.方差 D.极差5.已知向量,,若与的夹角为,则()A.2 B. C. D.16.在△ABC中,,则A等于()A.30° B.60° C.120° D.150°7.已知正四棱锥的底面边长为2,侧棱长为,则该正四棱锥的体积为()A. B. C. D.8.已知,,则的最大值为()A.9 B.3 C.1 D.279.已知向量,,,且,则实数的值为A. B. C. D.10.在中,,是的内心,若,其中,动点的轨迹所覆盖的面积为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某中学高一年级有学生1200人,高二年级有学生900人,高三年级有学生1500人,现按年级用分层抽样的方法从这三个年级的学生中抽取一个容量为720的样本进行某项研究,则应从高三年级学生中抽取_____人.12.已知一圆台的底面圆的半径分别为2和5,母线长为5,则圆台的高为_______.13.关于函数有下列命题:①由可得必是的整数倍;②的图像关于点对称,其中正确的序号是____________.14.在中,为边中点,且,,则______.15._________________;16.在等比数列中,,的值为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知为第三象限角,.(1)化简(2)若,求的值18.已知向量的夹角为60°,且.(1)求与的值;(2)求与的夹角.19.已知数列的各项均为正数,对任意,它的前项和满足,并且,,成等比数列.(1)求数列的通项公式;(2)设,为数列的前项和,求.20.在平面直角坐标系中,点是坐标原点,已知点为线段上靠近点的三等分点.求点的坐标:若点在轴上,且直线与直线垂直,求点的坐标.21.已知分别是内角的对边,.(1)若,求(2)若,且求的面积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

根据正弦余弦的二倍角公式化简求解.【详解】,故选A.【点睛】本题考查三角函数的恒等变化,关键在于寻找题目与公式的联系.2、D【解析】试题分析:由题意可知x=-4,y=3,r=5,所以.故选D.考点:三角函数的概念.3、D【解析】

直接应用正弦函数的平移变换和伸缩变换的规律性质,求出函数的解析式,对任意的均有,说明函数在时,取得最大值,得出的表达式,结合已知选出正确答案.【详解】因为函数的图象向左平移个单位长度,所以得到函数,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,所以,对任意的均有成立,所以在时,取得最大值,所以有而,所以的最小值为.【点睛】本题考查了正弦型函数的图象变换规律、函数图象的性质,考查了函数最大值的概念,正确求出变换后的函数解析式是解题的关键.4、A【解析】

可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案.【详解】设9位评委评分按从小到大排列为.则①原始中位数为,去掉最低分,最高分,后剩余,中位数仍为,A正确.②原始平均数,后来平均数平均数受极端值影响较大,与不一定相同,B不正确③由②易知,C不正确.④原极差,后来极差可能相等可能变小,D不正确.【点睛】本题旨在考查学生对中位数、平均数、方差、极差本质的理解.5、B【解析】

先计算与的模,再根据向量数量积的性质即可计算求值.【详解】因为,,所以,.又,所以,故选B.【点睛】本题主要考查了向量的坐标运算,向量的数量积,向量的模的计算,属于中档题.6、C【解析】

试题分析:考点:余弦定理解三角形7、D【解析】

求出正四棱锥的高后可求其体积.【详解】正四棱锥底面的对角线的长度为,故正四棱锥的高为,所以体积为,故选D.【点睛】正棱锥中,棱锥的高、斜高、侧棱和底面外接圆的半径可构成四个直角三角形,它们沟通了棱锥各个几何量之间的关系,解题中注意利用它们实现不同几何量之间的联系.8、B【解析】

由已知,可利用柯西不等式,构造柯西不等式,即可求解.【详解】由已知,可知,,利用柯西不等式,可构造得,即,所以的最大值为3,故选B.【点睛】本题主要考查了柯西不等式的应用,其中解答中熟记柯西不等式,合理构造柯西不等式求解是解答的关键,着重考查了推理与运算能力,属于中档试题.9、A【解析】

求出的坐标,由得,得到关于的方程.【详解】,,因为,所以,故选A.【点睛】本题考查向量减法和数量积的坐标运算,考查运算求解能力.10、A【解析】

由且,易知动点的轨迹为以为邻边的平行四边形的内部(含边界),在中,由,利用余弦定理求得边,再由和,求得内切圆的半径,从而得到,再由动点的轨迹所覆盖的面积得解.【详解】因为且,根据向量加法的平行四边形运算法则,所以动点的轨迹为以为邻边的平行四边形的内部(含边界),因为在中,,所以由余弦定理得:,所以,即,解得:,,所以.设的内切圆的半径为,所以所以.所以.所以动点的轨迹所覆盖的面积为:.故选:A【点睛】本题主要考查了动点轨迹所覆盖的面积的求及正弦定理,余弦定理的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、1.【解析】

先求得高三学生占的比例,再利用分层抽样的定义和方法,即可求解.【详解】由题意,高三学生占的比例为,所以应从高三年级学生中抽取的人数为.【点睛】本题主要考查了分层抽样的定义和方法,其中解答中熟记分层抽样的定义和抽取的方法是解答的关键,着重考查了运算与求解能力,属于基础题.12、4【解析】

根据圆台轴截面等腰梯形计算.【详解】,设圆高为,由圆台轴截面是等腰梯形得:,即,,故答案为:4.【点睛】本题考查求圆台的高,解题关键是掌握圆台的性质,圆台轴截面是等腰梯形.13、②【解析】

对①,可令求出的通式,再进行判断;对②,将代入检验是否为0即可【详解】对①,令得,可令,,①错;对②,当时,,②对故正确序号为:②故答案为②【点睛】本题考查三角函数的基本性质,属于基础题14、0【解析】

根据向量,,取模平方相减得到答案.【详解】两个等式平方相减得到:故答案为0【点睛】本题考查了向量的加减,模长,意在考查学生的计算能力.15、1【解析】

利用诱导公式化简即可得出答案【详解】【点睛】本题考查诱导公式,属于基础题.16、【解析】

根据等比数列的性质,可得,即可求解.【详解】由题意,根据等比数列的性质,可得,解得.故答案为:【点睛】本题主要考查了等比数列的性质的应用,其中解答熟记等比数列的性质,准确计算是解答的关键,着重考查了计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解析】利用指数运算、指对互化、对数运算求解试题分析:(1)(2)由,得.又已知为第三象限角,所以,所以,所以=………………10分考点:本题主要考查了诱导公式、同角三角函数基本关系以及三角函数符号的判定.点评:解决此类问题的关键是掌握诱导公式、同角三角函数基本关系以及三角函数符好的判定方法.诱导公式的记忆应结合图形记忆较好,难度一般.18、(1),;(2).【解析】

(1)根据,即可得解;(2)根据公式计算求解.【详解】(1)由题向量的夹角为60°,所以,,;(2),所以【点睛】此题考查平面向量数量积,根据定义计算两个向量的数量积,求向量的模长和根据数量积与模长关系求向量夹角.19、(1),(2)【解析】

(1)根据与的关系,利用临差法得到,知公差为3;再由代入递推关系求;(2)观察数列的通项公式,相邻两项的和有规律,故采用并项求和法,求其前项和.【详解】(1)对任意,有,①当时,有,解得或.当时,有.②①-②并整理得.而数列的各项均为正数,.当时,,此时成立;当时,,此时,不成立,舍去.,.(2).【点睛】已知与的递推关系,利用临差法求时,要注意对下标与分两种情况,即;数列求和时要先观察通项特点,再决定采用什么方法.20、(1)(2)【解析】

(1)由题意利用线段的定比分点坐标公式,两个向量坐标形式的运算法则,求出点P的坐标.(2)由题意利用两个向量垂直的性质,两个向量坐标形式的运算法则,求出点Q的坐标.【详解】设,因为,所以,又,所以,解得,从而.设,所以,由已知直线与直线垂直,所以则,解得,所以.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论