2023届福建省龙岩市长汀县长汀、连城一中等六校高一数学第二学期期末达标测试试题含解析_第1页
2023届福建省龙岩市长汀县长汀、连城一中等六校高一数学第二学期期末达标测试试题含解析_第2页
2023届福建省龙岩市长汀县长汀、连城一中等六校高一数学第二学期期末达标测试试题含解析_第3页
2023届福建省龙岩市长汀县长汀、连城一中等六校高一数学第二学期期末达标测试试题含解析_第4页
2023届福建省龙岩市长汀县长汀、连城一中等六校高一数学第二学期期末达标测试试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则的值等于()A. B. C. D.2.某城市修建经济适用房.已知甲、乙、丙三个社区分别有低收入家庭360户、270户、180户,若首批经济适用房中有90套住房用于解决住房紧张问题,采用分层抽样的方法决定各社区户数,则应从乙社区中抽取低收入家庭的户数为()A.40 B.36 C.30 D.203.设△ABC的内角A,B,C所对的边长分别为a,b,c,且,则的最大值为()A. B.1 C. D.4.把函数,图象上所有的点向右平行移动个单位长度,横坐标伸长到原来的2倍,所得图象对应的函数为()A. B.C. D.5.如图所示,已知正三棱柱的所有棱长均为1,则三棱锥的体积为()A. B. C. D.6.的内角的对边分别为,若,则()A. B. C. D.7.设变量想x、y满足约束条件为则目标函数的最大值为()A.0 B.-3 C.18 D.218.已知向量,且,则().A. B.C. D.9.已知,函数的最小值是()A.5 B.4 C.8 D.610.将函数的图象向右平移个单位长度,所得图象对应的函数解析式是A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在等比数列中,,公比,若,则达到最大时n的值为____________.12.设向量,若,,则.13.若角的终边经过点,则___________.14.已知,则.15.5人排成一行合影,甲和乙不相邻的排法有______种.(用数字回答)16.已知,,,则的最小值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某建筑公司用8000万元购得一块空地,计划在该地块上建造一栋至少12层、每层4000平方米的楼房.经初步估计得知,如果将楼房建为x(x≥12)层,则每平方米的平均建筑费用为Q(x)=3000+50x(单位:元).(1)求楼房每平方米的平均综合费用f(x)的解析式.(2)为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?每平方米的平均综合费用最小值是多少?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)18.如图所示,一个半圆和长方形组成的铁皮,长方形的边为半圆的直径,为半圆的圆心,,,现要将此铁皮剪出一个三角形,使得,.(1)设,求三角形铁皮的面积;(2)求剪下的铁皮三角形的面积的最大值.19.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P().(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.20.选修4-5:不等式选讲已知函数,M为不等式的解集.(Ⅰ)求M;(Ⅱ)证明:当a,b时,.21.已知函数.(1)求函数的单调递增区间;(2)当时,求函数的最大值和最小值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】,所以,则,故选择D.2、C【解析】试题分析:利用分层抽样的比例关系,设从乙社区抽取户,则,解得.考点:考查分层抽样.3、D【解析】

根据正弦定理将已知等式化简得,再根据差角正切公式以及基本不等式可得结论.【详解】由正弦定理以及,可得,在中,代入上式中整理得,,即,即,且,所以,当且仅当,即时取等号.故选:D.【点睛】本题考查了正弦定理在解三角形中的应用,属于基础题.4、C【解析】

利用二倍角的余弦公式以及辅助角公式将函数化为的形式,然后再利用三角函数的图像变换即可求解.【详解】函数,函数图象上所有的点向右平行移动个单位长度可得,在将横坐标伸长到原来的2倍,可得.故选:C【点睛】本题考查了二倍角的余弦公式、辅助角公式以及三角函数的图像平移伸缩变换,需熟记公式,属于基础题.5、A【解析】

利用等体法即可求解.【详解】三棱锥的体积等于三棱锥的体积,因此,三棱锥的体积为,故选:A.【点睛】本题考查了等体法求三棱锥的体积、三棱锥的体积公式,考查了转化与化归思想的应用,属于基础题.6、B【解析】

首先通过正弦定理将边化角,于是求得,于是得到答案.【详解】根据正弦定理得:,即,而,所以,又为三角形内角,所以,故选B.【点睛】本题主要考查正弦定理的运用,难度不大.7、C【解析】

画出可行域如下图所示,由图可知,目标函数在点处取得最大值,且最大值为.故选C.【点睛】本小题主要考查利用线性规划求线性目标函数的最大值.这种类型题目的主要思路是:首先根据题目所给的约束条件,画图可行域;其次是求得线性目标函数的基准函数;接着画出基准函数对应的基准直线;然后通过平移基准直线到可行域边界的位置;最后求出所求的最值.属于基础题.8、D【解析】

运用平面向量的加法的几何意义,结合等式,把其中的向量都转化为以为起点的向量的形式,即可求出的表示.【详解】,,故本题选D.【点睛】本题考查了平面向量加法的几何意义,属于基础题.9、D【解析】试题分析:因为该函数的单调性较难求,所以可以考虑用不等式来求最小值,,因为,由重要不等式可知,所以,本题正确选项为D.考点:重要不等式的运用.10、B【解析】

利用三角函数图像平移原则,结合诱导公式,即可求解.【详解】函数的图象向右平移个单位长度得到.故选B.【点睛】本题考查三角图像变换,诱导公式,熟记变换原则,准确计算是关键,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、7【解析】

利用,得的值【详解】因为,,所以为7.故答案为:7【点睛】本题考查等比数列的项的性质及单调性,找到与1的分界是关键,是基础题12、【解析】

利用向量垂直数量积为零列等式可得,从而可得结果.【详解】因为,且,所以,可得,又因为,所以,故答案为.【点睛】利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用解答;(2)两向量垂直,利用解答.13、3【解析】

直接根据任意角三角函数的定义求解,再利用两角和的正切展开代入求解即可【详解】由任意角三角函数的定义可得:.则故答案为3【点睛】本题主要考查了任意角三角函数的定义和两角和的正切计算,熟记公式准确计算是关键,属于基础题.14、【解析】试题分析:两式平方相加并整理得,所以.注意公式的结构特点,从整体去解决问题.考点:三角恒等变换.15、72【解析】

先对其中3个人进行全排列有种,再对甲和乙进行插空有种,利用乘法原理得到排法总数为.【详解】先对其中3个人进行全排列有种,再对甲和乙进行插空有种,利用乘法原理得到排法总数为种,故答案为72【点睛】本题考查排列、组合计数原理的应用,考查基本运算能力.16、25【解析】

变形后,利用基本不等式可得.【详解】当且仅当,即,时取等号.故答案为:25【点睛】本题考查了利用基本不等式求最值,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)该楼房应建为20层,每平方米的平均综合费用最小值为5000元.【解析】【试题分析】先建立楼房每平方米的平均综合费用函数,再应基本不等式求其最小值及取得极小值时:解:设楼房每平方米的平均综合费用,,当且仅当时,等号取到.所以,当时,最小值为5000元.18、(1)三角形铁皮的面积为;(2)剪下的铁皮三角形的面积的最大值为.【解析】试题分析:(1)利用锐角三角函数求出和的长度,然后以为底边、以为高,利用三角形面积公式求出三角形的面积;(2)设,以锐角为自变量将和的长度表示出来,并利用面积公式求出三角形的面积的表达式,利用与之间的关系,令将三角形的面积的表达式表示为以为自变量的二次函数,利用二次函数的单调性求出三角形的面积的最大值,但是要注意自变量的取值范围作为新函数的定义域.试题解析:(1)由题意知,,,,即三角形铁皮的面积为;(2)设,则,,,,令,由于,所以,则有,所以,且,所以,故,而函数在区间上单调递增,故当时,取最大值,即,即剪下的铁皮三角形的面积的最大值为.考点:1.三角形的面积;2.三角函数的最值;3.二次函数的最值19、(Ⅰ);(Ⅱ)或.【解析】

分析:(Ⅰ)先根据三角函数定义得,再根据诱导公式得结果,(Ⅱ)先根据三角函数定义得,再根据同角三角函数关系得,最后根据,利用两角差的余弦公式求结果.【详解】详解:(Ⅰ)由角的终边过点得,所以.(Ⅱ)由角的终边过点得,由得.由得,所以或.点睛:三角函数求值的两种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.①一般可以适当变换已知式,求得另外函数式的值,以备应用;②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.20、(Ⅰ);(Ⅱ)详见解析.【解析】试题分析:(I)先去掉绝对值,再分,和三种情况解不等式,即可得;(II)采用平方作差法,再进行因式分解,进而可证当,时,.试题解析:(I)当时,由得解得;当时,;当时,由得解得.所以的解集.(Ⅱ)由(Ⅰ)知,当时,,从而,因此【考点】绝对值不等式,不等式的证明.【名师点睛】形如(或)型的不等式主要有两种解法:(1)分段讨论法:利用绝对值号内式子对应的方程的根,将数轴分为,,(此处设)三个部分,在每个部分去掉绝对值号并分别列出对应的不等式进行求解,然后取各

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论