河北省邯郸市广泰中学高三数学理下学期期末试题含解析_第1页
河北省邯郸市广泰中学高三数学理下学期期末试题含解析_第2页
河北省邯郸市广泰中学高三数学理下学期期末试题含解析_第3页
河北省邯郸市广泰中学高三数学理下学期期末试题含解析_第4页
河北省邯郸市广泰中学高三数学理下学期期末试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省邯郸市广泰中学高三数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若复数z满足(i为虚数单位),则z的共轭复数为()A. B. C. D.参考答案:D【考点】复数代数形式的乘除运算.【分析】根据复数的运算求出z,从而求出z的共轭复数即可.【解答】解:∵,∴z===1+i,则z的共轭复数为1﹣i,故选:D.【点评】本题考查了复数的运算,考查共轭复数问题,是一道基础题.2.若把函数f(x)=sinωx的图象向左平移个单位,恰好与函数y=cosωx的图象重合,则ω的值可能是(

)A. B. C. D.参考答案:D【考点】函数y=Asin(ωx+φ)的图象变换.【专题】函数的性质及应用.【分析】把函数f(x)=sinωx的图象向左平移个单位,得到函数y=sin(ωx+ω)的图象,而y=cosωx=sin(+ωx),可得ω=+2kπ,k∈z,结合所给的选项得出结论.【解答】解:把函数f(x)=sinωx的图象向左平移个单位,得到函数y=sinω(x+)=sin(ωx+ω)的图象.而y=cosωx=cos(﹣ωx)=sin(+ωx),∴ω=+2kπ,k∈z.观察所给的选项,只有ω=满足条件,故选D.【点评】本题主要考查诱导公式的应用,利用了y=Asin(ωx+?)的图象变换规律,属于中档题.3.从某小学中随机抽取100名学生,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图2).由图中数据可知,身高在[120,130]内的学生人数为()图2A.20

B.25

C.30

D.35参考答案:C略4.若命题“使得”为假命题,则实数的取值范围是A.[2,6] B.[-6,-2] C.(2,6) D.(-6,-2)参考答案:A5.表面积为40π的球面上有四点S、A、B、C且△SAB是等边三角形,球心O到平面SAB的距离为,若平面SAB⊥平面ABC,则三棱锥S﹣ABC体积的最大值为()A.2 B. C.6 D.参考答案:C【考点】棱柱、棱锥、棱台的体积.【专题】数形结合;数形结合法;立体几何.【分析】作出直观图,根据球和等边三角形的性质计算△SAB的面积和棱锥的最大高度,代入体积公式计算.【解答】解:过O作OF⊥平面SAB,则F为△SAB的中心,过F作FE⊥SA于E点,则E为SA中点,取AB中点D,连结SD,则∠ASD=30°,设球O半径为r,则4πr2=40π,解得r=.连结OS,则OS=r=,OF=,∴SF==2.∴DF=EF=,SE==.∴SA=2SE=2,S△SAB=SA2=6.过O作OM⊥平面ABC,则当C,M,D三点共线时,C到平面SAB的距离最大,即三棱锥S﹣ABC体积最大.连结OC,∵平面SAB⊥平面ABC,∴四边形OMDF是矩形,∴MD=OF=,OM=DF=.∴CM==2.∴CD=CM+DM=3.∴三棱锥S﹣ABC体积V=S△SAB?CD==6.故选C.【点评】本题考查了棱锥的体积计算,空间几何体的作图能力,准确画出直观图找到棱锥的最大高度是解题关键.6.在△ABC中,AC=,BC=2,B=60°,则BC边上的高等于()A.

B.

C.

D.参考答案:B略7.已知直线与圆相切,其中,且,则满足条件的有序实数对共有的个数为

(

).(A)1

(B)2

(C)3

(D)4参考答案:D8.在△ABC中,M是BC的中点,AM=1,点P在AM上且满足,则等于A.

B.

C.

D.

参考答案:A略9.某学校为了调查高三年级的200名文科学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机抽取20名同学进行调查;第二种由教务处对该年级的文科学生进行编号,从001到200,抽取学号最后一位为2的同学进行调查,则这两种抽样的方法依次为(

).A.分层抽样,简单随机抽样

B.简单随机抽样,分层抽样C.分层抽样,系统抽样

D.简单随机抽样,系统抽样参考答案:D10.已知函数的最小正周期是,若将其图象向右平移个单位后得到的曲线关于原点对称,则函数f(x)的图象(

) A.关于点(,0)对称B.关于直线x=对称 C.关于点(,0)对称 D.关于直线x=对称参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.在体积为V的三棱锥S﹣ABC的棱AB上任取一点P,则三棱锥P﹣SBC的体积大于的概率是.参考答案:考点:几何概型;棱柱、棱锥、棱台的体积.专题:概率与统计.分析:首先分析题目,将原问题等价转化为:求△PBC的面积大于S△ABC的概率,可借助于画图求解的方法,然后根据图形分析出基本的事件空间与事件的几何度量是线段的长度,再根据几何关系求解出它们的比例即可.解答:解:如图,由于三棱锥P﹣SBC和三棱锥S﹣PBC的体积相等,三棱锥S﹣PBC与三棱锥S﹣ABC等高,故在体积为V的三棱锥S﹣ABC的棱AB上任取一点P,三棱锥P﹣SBC的体积大于,即在面积为S的△ABC的边AB上任取一点P,则△PBC的面积大于等于即可.记事件A={△PBC的面积大于},基本事件空间是线段AB的长度,(如图)因为S△PBC>,则有BC?PE>×BC?AD;化简记得到:>,因为PE平行AD则由三角形的相似性>;所以,事件A的几何度量为线段AP的长度,因为AP=AB,所以△PBC的面积大于S的概率==.故答案为:.点评:解决有关几何概型的问题的关键是认清基本事件空间是指面积还是长度或体积,并且熟练记忆有关的概率公式.12.等腰直角三角形的直角顶点位于原点,另外两个点在抛物线y2=4x上,则这个等腰直角三角形的面积为

.参考答案:16【考点】K8:抛物线的简单性质.【分析】由抛物线关于x轴对称,可得等腰三角形的另外两个点关于x轴对称,求得直线y=x和抛物线的交点,即可得到所求面积.【解答】解:由等腰直角三角形的直角顶点位于原点,另外两个点在抛物线y2=4x上,由抛物线的对称性可得另外两个点关于x轴对称,可设直线y=x,代入抛物线y2=4x,可得x2=4x,解得x=0或x=4,可得等腰直角三角形的另外两个点为(4,4),(4,﹣4),则这个等腰直角三角形的面积为?()2=16.故答案为:16.13.已知函数f(x)=(x>1),当且仅当x=

时,f(x)取到最小值为

.参考答案:2;2.【考点】基本不等式;函数的最值及其几何意义.【专题】不等式的解法及应用.【分析】变形利用基本不等式的性质即可得出.【解答】解:∵x>1,∴x﹣1>0.∴函数f(x)==x﹣1+=2,当且仅当x=2时取等号.故答案分别为:2;2.【点评】本题考查了基本不等式的性质,属于基础题.14.函数的单调增区间是_________参考答案:本题主要考查复合函数的单调性,考查了对数函数的定义域,难度较小.

因为函数在定义域上都是递增函数,所以函数的单调增区间即为该函数的定义域,即,解得,所以所求增区间是.15.若行列式,则

.参考答案:116.若函数,则=参考答案:

【知识点】导数的运算B11解析:因为,所以,则令可得,所以,则,而,则,即,故答案为。【思路点拨】通过导函数的运算求得,代回原函数式可得以及,即可求出、,最后写出结果。17.已知,正实数满足,且,若在区间上的最大值为2,则=_______。参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分10分)选修4-1:几何证明选讲如图,在ΔABC中,CD是∠ACB的角平分线,△ADC的外接圆交BC于点E,AB=2AC。(1)求证:BE=2AD;(2)当AC=3,EC=6时,求AD的长。参考答案:19.已知函数f(x)=﹣,(x∈R),其中m>0(Ⅰ)当m=2时,求曲线y=f(x)在点(3,f(3))处的切线的方程;(Ⅱ)若f(x)在()上存在单调递增区间,求m的取值范围(Ⅲ)已知函数f(x)有三个互不相同的零点0,x1,x2且x1<x2,若对任意的x∈[x1,x2],f(x)>f(1)恒成立.求m的取值范围.参考答案:【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)当m=2时,f(x)=x3+x2+3x,通过求导得出斜率k的值,从而求出切线方程;(Ⅱ)只需f′()>0即可,解不等式求出即可;(Ⅲ)由题设可得,由判别式△>0,求出m的范围,对任意的x∈[x1,x2],f(x)>f(1)恒成立的充要条件是,从而综合得出m的取值范围.【解答】解:(Ⅰ)当m=2时,f(x)=x3+x2+3x,∴f′(x)=﹣x2+2x+3,故k=f′(3)=0,又∵f(3)=9,∴曲线y=f(x)在点(3,f(3))处的切线方程为:y=9,(Ⅱ)若f(x)在()上存在单调递增区间,即存在某个子区间(a,b)?(,+∞)使得f′(x)>0,∴只需f′()>0即可,f′(x)=﹣x2+2x+m2﹣1,由f′()>0解得m<﹣或m>,由于m>0,∴m>.(Ⅲ)由题设可得,∴方程有两个相异的实根x1,x2,故x1+x2=3,且解得:(舍去)或,∵x1<x2,所以2x2>x1+x2=3,∴,若x1≤1<x2,则,而f(x1)=0,不合题意.若1<x1<x2,对任意的x∈[x1,x2],有x>0,x﹣x1≥0,x﹣x2≤0,则,又f(x1)=0,所以f(x)在[x1,x2]上的最小值为0,于是对任意的x∈[x1,x2],f(x)>f(1)恒成立的充要条件是,解得;

综上,m的取值范围是.20.已知向量,

(1)当向量与向量共线时,求的值;

(2)求函数的最大值,并求函数取得最大值时的的值.参考答案:(1)共线,∴,∴.(2),,函数的最大值为,得函数取得最大值时略21.设为奇函数,为常数。(I)求的值;(II)证明在区间

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论