版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省黄冈市罗田县骆驼坳中学高三数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图,一货轮航行到M处,测得灯塔S在货轮的北偏东150,与灯塔S相距20海里,随后货轮按照北偏西300的方向航行30分钟到达N处后,又测得灯塔在货轮的东北方向,则货轮的速度为A.20(+)海里/时;B.20(-)海里/时;
C.20(+)海里/时;D.20(-)海里/时;;参考答案:B略2.已知x0是函数f(x)=ex﹣的一个零点(其中e为自然对数的底数),若x1∈(1,x0),x2∈(x0,+∞),则(
)A.f(x1)<0,f(x2)<0 B.f(x1)<0,f(x2)>0 C.f(x1)>0,f(x2)<0 D.f(x1)>0,f(x2)>0参考答案:B【考点】函数零点的判定定理.【专题】函数思想;定义法;函数的性质及应用.【分析】判断函数f(x)的单调性,结合函数零点的定义,结合函数单调性的性质进行判断即可.【解答】解:函数f(x)在(1,+∞)上为增函数,∵x0是函数f(x)=ex﹣的一个零点,∴f(x0)=e﹣=0,则当x1∈(1,x0)时,f(x1)<f(x0)=0,当x2∈(x0,+∞)时,f(x2)>f(x0)=0,故选:B.【点评】本题主要考查函数单调性和函数零点的应用,利用函数的单调性是解决本题的关键.3.在△ABC中,点D满足,点E是线段AD上的一个动点,若,则t=(λ﹣1)2+μ2的最小值是()A. B. C. D.参考答案:C【考点】平面向量的基本定理及其意义.【分析】根据共线向量基本定理可得到存在实数k,,0≤k≤1,然后根据已知条件及向量的加法、减法的几何意义即可得到,从而得到.代入t,进行配方即可求出t的最小值.【解答】解:如图,E在线段AD上,所以存在实数k使得;;∴==;∴;∴=;∴时,t取最小值.故选:C.4.已知,点满足,则的最大值为(
)A.-5
B.-1
C.0
D.1参考答案:D
5.设是R上的可导函数,分别为的导函数,且满足,则当时,有(
)A. B.C.
D.参考答案:C由题意令,则,∴函数在R上单调递减,又,∴,即.选C.
6.已知函数f(x)=sin2x﹣cos2x+1,下列结论中错误的是()A.f(x)的图象关于(,1)中心对称B.f(x)在(,)上单调递减C.f(x)的图象关于x=对称D.f(x)的最大值为3参考答案:B【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】利用辅助角公式将函数进行化简,结合三角函数的单调性,最值性,对称性的性质分别进行判断即可.【解答】解:f(x)=sin2x﹣cos2x+1=2sin(2x﹣)+1,A.当x=时,sin(2x﹣)=0,则f(x)的图象关于(,1)中心对称,故A正确,B.由2kπ+≤2x﹣≤2kπ+,k∈Z,得kπ+≤x≤kπ+,k∈Z,当k=0时,函数的递减区间是[,],故B错误,C.当x=时,2x﹣=2×﹣=,则f(x)的图象关于x=对称,故C正确,D.当2sin(2x﹣)=1时,函数取得最大值为2+1=3,故D正确,故选:B7.下列几个结论:①“”是“”的充分不必要条件;②③已知,,,则的最小值为;④若点在函数的图象上,则的值为;⑤函数的对称中心为其中正确的是_______________(写出所有正确命题的序号).参考答案:②③④略8.若将函数的图象向左平移个单位后所得图象关于y辅对
称,则m的最小值为(A)
(B)
(C)
(D)参考答案:C略9.定义在R上的函数f(x)满足f(4)=1,为函数f(x)的导函数,已知的图像如图所示,若两个正数a,b满足f(2a+b)<1,则的取值范围是(
)参考答案:A略10.若集合M={x|﹣2<x<3},N={y|y=x2+1,x∈R},则集合M∩N=()A.(﹣2,+∞) B.(﹣2,3) C.[1,3) D.R参考答案:C【考点】交集及其运算.【专题】计算题.【分析】先将N化简,再求出M∩N.【解答】解:N={y|y=x2+1,x∈R}={y|y≥1}=[1,+∞),∵M={x|﹣2<x<3}=(﹣2,3),∴M∩N=[1,3)故选C.【点评】本题考查了集合的含义、表示方法,集合的交集的简单运算,属于基础题.本题中N表示的是函数的值域.二、填空题:本大题共7小题,每小题4分,共28分11.(坐标系与参数方程选做题)已知直线的极坐标方程为,则点(0,0)到这条直线的距离是
.参考答案:12.如图所示,已知一个多面体的平面展开图由一个边长为2的正方形和4个边长为2的正三角形组成,则该多面体的体积是________.参考答案:略13.设,(i为虚数单位),则的值为。参考答案:814.在等比数列中,,则公比
,
参考答案:在等比数列中,所以,即。所以,所以,即数列是一个公比为2的等比数列,所以。15.已知{an}是等差数列,,且.若,则{bn}的前n项和Tn=_____.参考答案:【分析】先设等差数列的公差为,根据题中条件,求出首项和公差,得到通项公式,进而得到,再由分母有理化,用裂项相消的方法,即可求出结果.【详解】设等差数列的公差为,由,可得,解得,所以,因此,所以,的前项和.故答案为【点睛】本题主要考查等差数列的通项公式、以及裂项相消法求和,熟记公式即可,属于常考题型.16.求值:sin(-1200°)·cos1290°+cos(-1020°)·sin(-1050°)+tan945°=
参考答案:2
略17.已知函数y=f(x)为R上的偶函数,当x≥0时,f(x)=log2(x+2)﹣3,则f(6)=,f(f(0))=.参考答案:解:∵当x≥0时,f(x)=log2(x+2)﹣3,∴f(6)=log2(6+2)﹣3=3﹣3=0f(0)=1﹣3=﹣2,∵函数y=f(x)为R上的偶函数,∴f(f(0))=f(﹣2)=f(2)=2﹣3=﹣1故答案为:0,﹣1考点:函数奇偶性的性质.专题:函数的性质及应用.分析:运用解析式得出f(6)=log2(6+2)﹣3,结合函数的奇偶性f(f(0))=f(﹣2)=f(2)求解即可.解答:解:∵当x≥0时,f(x)=log2(x+2)﹣3,∴f(6)=log2(6+2)﹣3=3﹣3=0f(0)=1﹣3=﹣2,∵函数y=f(x)为R上的偶函数,∴f(f(0))=f(﹣2)=f(2)=2﹣3=﹣1故答案为:0,﹣1点评:本题简单的考查了函数的性质,解析式,奇偶性的运用,属于简单计算题三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数,若函数满足恒成立,则称为函数的下界函数.(1)若函数是的下界函数,求实数的取值范围;(2)证明:对任意的,函数都是的下界函数.参考答案:(1)若为的下界函数,易知不成立,而必然成立.当时,若为的下界函数,则恒成立,即恒成立.令,则.易知函数在单调递减,在上单调递增.由恒成立得,解得.综上知.(2)解法一
由(1)知函数是的下界函数,即恒成立,若,构造函数,则,易知,即是的下界函数,即恒成立.所以恒成立,即时,是的下界函数.解法二
构造函数,,.易知必有满足,即.又因为在上单调递减,在上单调递增,故,所以恒成立.即对任意的,是的下界函数.略19.已知数列的前项和为.(Ⅰ)求数列的通项公式;(Ⅱ)若,试比较的大小.参考答案:解:
(Ⅰ)由
(1)
得
(2)(2)-(1)得,
整理得
(
∴数列是以4为公比的等比数列.其中,,所以,
。。。。。。。。。。。。。。。。5分
(2)
。。。。。。。。。。。。。。。。。。。。。。20.某兴趣小组进行“野岛生存”实践活动,他们设置了200个取水敞口箱.其中100个采用A种取水法,100个采用B种取水法.如图甲为A种方法一个夜晚操作一次100个水箱积取淡水量频率分布直方图,图乙为B种方法一个夜晚操作一次100个水箱积取淡水量频率分布直方图.(1)设两种取水方法互不影响,设M表示事件“A法取水箱水量不低于1.0kg,B法取水箱水量不低于1.1kg”,以样本估计总体,以频率分布直方图中的频率为概率,估计M的概率;(2)填写下面2×2列联表,并判断是否有99%的把握认为箱积水量与取水方法有关.
箱积水量<1.1kg箱积水量≥1.1kg箱数总计A法
B法
箱数总计
附:0.0500.0100.0013.8416.63510.828参考答案:解:(1)设“法取水箱水量不低于”为事件,“法取水箱水量不低于”为事件,,,,故发生的概率为.(2)列联表:
箱积水量箱积水量箱数总计法法箱数总计,∴,∴有的把握认为箱积水量与取水方法有关.
21.(本小题满分12分)近年来,某市为了促进生活垃圾的风分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应分垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):
“厨余垃圾”箱“可回收物”箱“其他垃圾”箱厨余垃圾400100100可回收物3024030其他垃圾202060(Ⅰ)试估计厨余垃圾投放正确的概率;(Ⅱ)试估计生活垃圾投放错误额概率;(Ⅲ)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为其中a>0,=600。当数据的方差最大时,写出的值(结论不要求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度物业公司提供物业管理软件合同
- 2024年度技术转让合同:研究机构将其科研成果转让给高新技术企业的合同
- 2024年度房屋租赁合同的房屋位置和使用条件规定
- 2024年度厂房租赁合同详述
- 2024年度爱奇艺体育节目制作委托合同
- 2024年度品牌授权经营合同(服装品牌)
- 热敏纸市场发展现状调查及供需格局分析预测报告
- 硫磺棒消毒用项目评价分析报告
- 轻型飞机市场发展现状调查及供需格局分析预测报告
- 空气干燥器市场发展现状调查及供需格局分析预测报告
- 钢管单元工程质量评定表
- 现场监护人培训
- 中班语言诗歌活动《月亮》课件
- 小学生爱国知识竞赛题省公开课一等奖全国示范课微课金奖课件
- 中华传统文化与人生修养智慧树知到期末考试答案2024年
- 育婴员中级第三章教育实施
- 《促进民族团结作业设计方案-2023-2024学年初中道德与法治统编版》
- DB32-T 4111-2021 预应力混凝土实心方桩基础技术规程
- 网络与新媒体广告期末试卷试题题库及参考答案8
- 古建筑修缮工程方案
- 工勤保洁人员院感知识培训
评论
0/150
提交评论