版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
《生活中的轴对称》全章复习与巩固(基础)【学习目标】1.认识和欣赏身边的轴对称图形,增进学习数学的兴趣.2.了解轴对称的概念,探索轴对称、轴对称图形的基本性质及它们的简单应用.3.探索线段的垂直平分线、角平分线和等腰三角形的性质以及判定方法.4.能按照要求,画出一些轴对称图形.【知识网络】【要点梳理】要点一、轴对称【高清课堂:389304轴对称复习,本章概述】1.轴对称图形和轴对称(1)轴对称图形
如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.(2)轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴.要求诠释:成轴对称的两个图形的性质:①关于某条直线对称的两个图形形状相同,大小相等,是全等形;②如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上.(3)轴对称图形与轴对称的区别和联系要点诠释:轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的.联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形.2.线段的垂直平分线线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等;反过来,与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.要点诠释:线段的垂直平分线的性质是证明两线段相等的常用方法之一.同时也给出了引辅助线的方法,那就是遇见线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件.三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心.3.角平分线角平分线性质是:角平分线上的任意一点,到角两边的距离相等;反过来,在角的内部到角两边的距离相等的点在角平分线上.要点诠释:前者的前提条件是已经有角平分线了,即角被平分了;后者则是在结论中确定角被平分,一定要注意着两者的区别,在使用这两个定理时不要混淆了.要点二、作轴对称图形1.作轴对称图形(1)几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些点,就可以得到原图形的轴对称图形;(2)对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.要点三、等腰三角形1.等腰三角形
(1)定义:有两边相等的三角形,叫做等腰三角形.如图所示,在△ABC中,AB=AC,则它叫等腰三角形,其中AB、AC为腰,BC为底边,∠A是顶角,∠B、∠C是底角.要点诠释:等腰直角三角形的两个底角相等,且都等于45°.等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A=180°-2∠B,∠B=∠C=.(2)等腰三角形性质①等腰三角形的两个底角相等,即“等边对等角”;②等腰三角形顶角的平分线、底边上的中线与底边上的高线互相重合(简称“三线合一”).特别地,等腰直角三角形的每个底角都等于45°.(3)等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(即“等角对等边”).要点诠释:等腰三角形的判定是证明两条线段相等的重要定理,是将三角形中的角的相等关系转化为边的相等关系的重要依据.等腰三角形的性质定理和判定定理是互逆定理.2.等边三角形(1)定义:三条边都相等的三角形,叫做等边三角形.要点诠释:由定义可知,等边三角形是一种特殊的等腰三角形.也就是说等腰三角形包括等边三角形.(2)等边三角形性质:等边三角形的三个角相等,并且每个角都等于60°.(3)等边三角形的判定:①三条边都相等的三角形是等边三角形;②三个角都相等的三角形是等边三角形;③有一个角为60°的等腰三角形是等边三角形.【典型例题】类型一、轴对称的性质与应用1、如图,由四个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点.在田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含△ABC本身)共有()A.1个B.2个C.3个D.4个【思路点拨】分别以正方形的对角线和田字格的十字线为对称轴,来找三角形.【答案】C;【解析】先把田字格图标上字母如图,确定对称轴找出符合条件的三角形,再计算个数.△HEC与△ABC关于CD对称;△FDB与△ABC关于BE对称;△GED与△ABC关于HF对称;关于AG对称的是它本身.所以共3个.【总结升华】本题考查了轴对称的性质;确定对称轴然后找出成轴对称的三角形是解题的关键.举一反三:【变式】如图,△ABC的内部有一点P,且D,E,F是P分别以AB,BC,AC为对称轴的对称点.若△ABC的内角∠A=70°,∠B=60°,∠C=50°,则∠ADB+∠BEC+∠CFA=()A.180°B.270°C.360°D.480°【答案】C;解:连接AP,BP,CP,∵D,E,F是P分别以AB,BC,AC为对称轴的对称点∴∠ADB=∠APB,∠BEC=∠BPC,∠CFA=∠APC,∴∠ADB+∠BEC+∠CFA=∠APB+∠BPC+∠APC=360°. 2、已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,求∠APB的度数.【思路点拨】求周长最小,利用轴对称的性质,找到P的对称点来确定A、B的位置,角度的计算,可以通过三角形内角和定理和等腰三角形的性质计算.【答案与解析】解:分别作P关于OM、ON的对称点,,连接交OM于A,ON于B.则△PAB为符合条件的三角形.∵∠MON=40°∴∠=140°.∠=∠PAB,∠=∠PBA.∴(∠PAB+∠PBA)+∠APB=140°∴∠PAB+∠PBA+2∠APB=280°∵∠PAB=∠+∠,∠PBA=∠+∠∴∠+∠+∠=180°∴∠APB=100°【总结升华】将实际问题抽象或转化为几何模型,将周长的三条线段的和转化为一条线段,这样取得周长的最小值.举一反三:【变式】如图,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90°,AB=BC,AE=DE,在BC,DE上分别找一点M,N,使得△AMN的周长最小时,则∠AMN+∠ANM的度数为().A.100°B.110°C.120°D.130°【答案】C;提示:找A点关于BC的对称点,关于ED的对称点,连接,交BC于M点,ED于N点,此时△AMN周长最小.∠AMN+∠ANM=180°-∠MAN,而2∠BAM=∠AMN,2∠EAN=∠ANM,∠BAM+∠EAN+∠MAN=120°,所以∠AMN+∠ANM=120°.类型二、线段垂直平分线性质3、如图,在等腰△ABC中,∠BAC=120°,DE是AC的垂直平分线,线段DE=1cm,求BD的长.【思路点拨】连接AD,根据等腰三角形的两底角相等求出∠B=∠C=30°,再根据线段垂直平分线上的点到线段两端点的距离相等可得AD=CD,然后求出∠CAD=30°,再求出∠BAD=90°,然后根据30°角所对的直角边等于斜边的一半求出CD=2DE,BD=2AD,代入数据进行计算即可得解.【答案与解析】解:连接AD,∵等腰△ABC,∠BAC=120°,∴∠B=∠C=30°,∵DE是AC的垂直平分线,∴AD=CD,∴∠CAD=∠C=30°,∴∠BAD=∠BAC﹣∠CAD=120°﹣30°=90°,在Rt△CDE中,CD=2DE,在Rt△ABD中,BD=2AD,∴BD=4DE,∵DE=1cm,∴BD的长为4cm.故答案为:4cm.【总结升华】本题考查了等腰三角形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,熟记性质是解题的关键.举一反三【变式】如图,在△ABC中,∠A=50°,DE是线段AB的垂直平分线,E为垂足,交AC于点D,则∠ABD=_________.【答案】50°;类型三、角平分线性质4、已知:如图,CD⊥AB于D,BE⊥AC于E,BE、CD相交于点O,且AO平分∠BAC,求证:OB=OC.证明:∵AO平分∠BAC,∴OB=OC(角平分线上的点到角的两边距离相等)上述解答不正确,请你写出正确解答.【思路点拨】由角平分线的性质可得OD=OE,然后证明△DOB≌△EOC,可得证OB=OC.【答案与解析】证明:∵AO平分∠BAC,CD⊥AB,BE⊥AC,∴OD=OE,在△DOB和△EOC中,∠DOB=∠EOC,OD=OE,∠ODB=∠OEC,∴△DOB≌△EOC(ASA),∴OB=OC.【总结升华】此题主要考查角平分线的性质和全等三角形的判定和性质,注意点到直线的距离是垂线段的长.举一反三【变式】如图,△ABC中,AB=AC,AD是角平分线,DE⊥AB,DF⊥AC,E、F为垂足,对于结论:①DE=DF;②BD=CD;③AD上任一点到AB、AC的距离相等;④AD上任一点到B、C的距离相等.其中正确的是()A.仅①②B.仅③④C.仅①②③D.①②③④【答案】D;类型四、等腰三角形的综合应用5、(2012•牡丹江)如图①,△ABC中.AB=AC,P为底边BC上一点,PE⊥AB,PF⊥AC,CH⊥AB,垂足分别为E、F、H.易证PE+PF=CH.证明过程如下:如图①,连接AP.∵PE⊥AB,PF⊥AC,CH⊥AB,∴=AB•PE,=AC•PF,=AB•CH.又∵,∴AB•PE+AC•PF=AB•CH.∵AB=AC,∴PE+PF=CH.(1)如图②,P为BC延长线上的点时,其它条件不变,PE、PF、CH又有怎样的数量关系?请写出你的猜想,并加以证明:(2)填空:若∠A=30°,△ABC的面积为49,点P在直线BC上,且P到直线AC的距离为PF,当PF=3时,则AB边上的高CH=______.点P到AB边的距离PE=________.【答案】7;4或10;【解析】解:(1)如图②,PE=PF+CH.证明如下:∵PE⊥AB,PF⊥AC,CH⊥AB,∴=AB•PE,=AC•PF,=AB•CH,∵=+,∴AB•PE=AC•PF+AB•CH,又∵AB=AC,∴PE=PF+CH;(2)∵在△ACH中,∠A=30°,∴AC=2CH.∵=AB•CH,AB=AC,∴×2CH•CH=49,∴CH=7.分两种情况:①P为底边BC上一点,如图①.∵PE+PF=CH,∴PE=CH-PF=7-3=4;②P为BC延长线上的点时,如图②.∵PE=PF+CH,∴PE=3+7=10.故答案为7;4或10.【总结升华】本题考查了等腰三角形的性质与三角形的面积,难度适中,运用面积证明可使问题简便,(2)中分情况讨论是解题的关键.6、已知,如图,∠1=12°,∠2=36°,∠3=48°,∠4=24°.求的度数.【答案与解析】ACD123ACD123B5E则,∴∠1=∠5=12°.∴60°∵48°∴.又∵∠2=36°,72°,∴∴BE=BC∴为等边三角形.∴又垂直平分BC.∴AE平分.∴30°∴∠ADB=30°【总结升华】直接求很难,那就想想能不能通过翻折或旋转构造一个与全等的三角形,从而使其换个位置,看看会不会容易求.举一反三:【变式】在△ABC中,AB=AC,∠BAC=80°,D为形内一点,且∠DAB=∠DBA=10°,求∠ACD的度数.【答案】解:作D关于BC中垂线的对称点E,连结AE,EC,DE∴△ABD≌△ACE∴AD=AE,∠DAB=∠EAC=10°∵∠BAC=80°,∴∠DAE=60°,△ADE为等边三角形∴∠AED=60°∵∠DAB=∠DBA=10°∴AD=BD=DE=EC∴∠AEC=160°,∴∠DEC=140°∴∠DCE=20°∴∠ACD=30°类型五、等边三角形的综合应用7、如图所示,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形.(1)如图(1)所示,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?(2)如图(2)所示,当点M在BC上时,其他条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图(2)证明;若不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 郑州普洱茶课程设计公司
- 高电压避雷课程设计
- 雷达测速仪课程设计
- 高尔夫课程设计
- 龙虎山研学课程设计
- 二级圆柱课程设计
- 课程设计宿舍查询软件
- 课程设计下载
- 王红裕课程设计与实施
- 爱贝英语课程设计
- 二零二五年度无人驾驶车辆测试合同免责协议书
- 北京市海淀区2024-2025学年高一上学期期末考试历史试题(含答案)
- 常用口服药品的正确使用方法
- 2025年湖北华中科技大学招聘实验技术人员52名历年高频重点提升(共500题)附带答案详解
- 2024年钻探工程劳务协作协议样式版B版
- 《心肺复苏机救治院内心搏骤停患者护理专家共识》解读
- 计算机二级WPS考试试题
- 智联招聘行测题库及答案
- 前程无忧测评题库及答案
- 毛渣采购合同范例
- 《2025年日历》电子版模板年历月历工作学习计划横版整年带农历
评论
0/150
提交评论